Neural network predictive control of thermal environment at the end of air conditioning system

Author(s):  
Gang Li ◽  
Xunhui Huang ◽  
Bin He ◽  
Ping Lu ◽  
Zhipeng Wang ◽  
...  
ChemInform ◽  
2014 ◽  
Vol 45 (30) ◽  
pp. no-no
Author(s):  
S. A. Hajimolana ◽  
S. M. Tonekabonimoghadam ◽  
M. A. Hussain ◽  
M. H. Chakrabarti ◽  
N. S. Jayakumar ◽  
...  

Author(s):  
Somaye A. Mohamadi ◽  
Abdulraheem J. Ahmed

<span>Despite their complexity and uncertainty, air conditioning systems should provide the optimal thermal conditions in a building. These controller systems should be adaptable to changes in environmental parameters. In most air conditioning systems, today, there are On/Off controllers or PID in more advanced types, which, due to different environmental conditions, are not optimal and cannot provide the optimal environmental conditions. Controlling thermal comfort of an air conditioning system requires estimation of thermal comfort index. In this study, fuzzy controller was used to provide thermal comfort in an air conditioning system, and neural network was used to estimate thermal comfort in the feedback path of the controller. Fuzzy controller has a good response given the non-linear features of air conditioning systems. In addition, the neural network makes it possible to use thermal comfort feedback in a real-time control.</span>


Author(s):  
Tobias Heidrich ◽  
Jonathan Grobe ◽  
Henning Meschede ◽  
Jens Hesselbach

The following paper describes an economical, multiple model predictive control (EMMPC) for an air conditioning system of a confectionery manufacturer in Germany. The application consists of a packaging hall for chocolate bars, in which a new local conveyor belt air conditioning system is used and thus the temperature and humidity limits in the hall can be significantly extended. The EMMPC calculates the optimum energy or cost humidity and temperature set points in the hall. For this purpose, time-discrete state space models and an economic objective function with which it is possible to react to flexible electricity prices in a cost-optimised manner are created. A possible future electricity price model for Germany with a flexible EEG levy was used as a flexible electricity price. The flexibility potential is determined by variable temperature and humidity limits in the hall, which are oriented towards the comfort field for easily working persons, and the building mass. The building mass of the created room model is used as a thermal energy store. Considering electricity price and weather forecasts as well as internal, production plan-dependent load forecasts, the model predictive controller directly controls the heating and cooling register and the humidifier of the air conditioning system.


2012 ◽  
pp. 45-52 ◽  
Author(s):  
E. Fitz-Rodríguez ◽  
M. Kacira ◽  
F. Villarreal-Guerrero ◽  
G.A. Giacomelli ◽  
R. Linker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document