Real-time tracking algorithm based on improved Mean Shift and Kalman filter

Author(s):  
Dayuan Zhuang ◽  
Xiaohu Ma ◽  
Yunlong Xu
2013 ◽  
Vol 457-458 ◽  
pp. 1050-1053
Author(s):  
Yan Hai Wu ◽  
Xia Min Xie ◽  
Zi Shuo Han

Since Mean-Shift tracking algorithm always falls into local extreme value when the target was sheltered and the particle filter tracking algorithm has huge calculation and degeneracy phenomenon, a new target tracking algorithm based on Mean-Shift and Particle Filter combination is proposed in this paper. First, this paper introduces the basic theory of Mean-Shift and Particle Filter tracking algorithm, and then presents the new target tracking which the Mean-Shift iteration embeds Particle Filter algorithm. Experiment results show that the algorithm needs less computation, while the real-time tracking has been guaranteed, robustness has been improved and the tracking results has been greatly increased.


2014 ◽  
Vol 95 (7) ◽  
pp. 31-37 ◽  
Author(s):  
Jharna Majumdar ◽  
Parashar Dhakal ◽  
Nabin Sharma Rijal ◽  
Amar Mani Aryal ◽  
Nilesh Kumar Mishra

2014 ◽  
Vol 556-562 ◽  
pp. 4260-4263
Author(s):  
Bing Yun Dai ◽  
Hui Zhao ◽  
Zheng Xi Kang

Target tracking algorithm mean-shift and kalman filter does well in tracking target. However, mean-shift algorithm may not do well in tracking the target which the size of target is changing gradually. Although some scholars put forward by 10% of the positive and negative incremental to scale adaptive,the algorithm can not be applied to track the target which gradually becomes bigger. In this paper, we propose registration corners of the target of the two adjacent frames, then calculate the distance ratio of registration corners.Use the distance ratio to determine the target becomes larger or smaller. The experimental results demonstrate that the proposed method performs better compared with the recent algorithms.


2011 ◽  
Vol 383-390 ◽  
pp. 1584-1589
Author(s):  
Zhen Hui Xu ◽  
Bao Quan Mao ◽  
Li Xu ◽  
Jun Yan Zhao

In order to improve the real-time character of missile radiator tracking and solve the predicting tracking problem when missile radiator shortly shelter or missing, it introduces moving target predicting and tracking technology. According to the predicting and tracking method, it proposes three predicting and tracking overall schemes of missile radiator based on Kalman filtering and improved Mean-Shift algorithm. Also it compares the real-time character of three kinds of schemes. According to the trajectory character of missile radiator, it constructs Kalman filter. The experiment results indicate that by using Kalman filtering technology, there are improvements in real-time character and shortly shelter or missing problem can be solved well. It plays a certain compensation function to the whole system.


Author(s):  
Paulo Malheiros ◽  
Paulo Rosa-Santos ◽  
José Gonçalves ◽  
Paulo Costa ◽  
António Paulo Moreira ◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092529
Author(s):  
Zuquan Xiang ◽  
Tao Tao ◽  
Lifei Song ◽  
Zaopeng Dong ◽  
Yunsheng Mao ◽  
...  

The unmanned surface vehicle has the characteristics of high maneuverability and flexibility. Object detection and tracking skills are required to improve the ability of unmanned surface vehicle to avoid collisions and detect targets on the surface of the water. Mean-shift algorithm is a classic target tracking algorithm, but it may fail when pixel interference and occlusion occur. This article proposes a tracking algorithm for unmanned surface vehicle based on an improved mean-shift optimization algorithm. The method uses the self-organizing feature map spatial topology to reduce the interference of the background pixels on the target object and predicts the center position of the object when the target is heavily occluded according to the extended Kalman filter. First, a self-organizing feature map model is built to classify pixels in a rectangular frame and the background pixels are extracted. Then, the method optimizes the extended Kalman filter solution process to complete the prediction and correction of the target center position and introduces a similarity function to determine the target occlusion. Finally, numerical analyses based on a ship model sailing experiment are performed with the help of OpenCV library. The experimental results validated that the proposed method significantly reduces the cumulative error in the tracking process and effectively predicts the position of the target between continuous frames when temporary occlusion occurs. The research can be used for target detection and autonomous navigation of unmanned surface vehicle.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1094 ◽  
Author(s):  
Zekun Xie ◽  
Weipeng Guan ◽  
Jieheng Zheng ◽  
Xinjie Zhang ◽  
Shihuan Chen ◽  
...  

Visible light positioning (VLP) is a promising technology for indoor navigation. However, most studies of VLP systems nowadays only focus on positioning accuracy, whereas robustness and real-time ability are often overlooked, which are all indispensable in actual VLP situations. Thus, we propose a novel VLP method based on mean shift (MS) algorithm and unscented Kalman filter (UKF) using image sensors as the positioning terminal and a Light Emitting Diode (LED) as the transmitting terminal. The main part of our VLP method is the MS algorithm, realizing high positioning accuracy with good robustness. Besides, UKF equips the mean shift algorithm with the capacity to track high-speed targets and improves the positioning accuracy when the LED is shielded. Moreover, a LED-ID (the identification of the LED) recognition algorithm proposed in our previous work was utilized to locate the LED in the initial frame, which also initialized MS and UKF. Furthermore, experiments showed that the positioning accuracy of our VLP algorithm was 0.42 cm, and the average processing time per frame was 24.93 ms. Also, even when half of the LED was shielded, the accuracy was maintained at 1.41 cm. All these data demonstrate that our proposed algorithm has excellent accuracy, strong robustness, and good real-time ability.


Sign in / Sign up

Export Citation Format

Share Document