An Efficient Distributed Protocol for Online Gossiping Problem

Author(s):  
Zhengnan Shi ◽  
P.K. Srimani
Keyword(s):  
Author(s):  
Paulius Stankaitis ◽  
Alexei Iliasov ◽  
Tsutomu Kobayashi ◽  
Yamine Aït-Ameur ◽  
Fuyuki Ishikawa ◽  
...  

AbstractThe decentralised railway signalling systems have a potential to increase capacity, availability and reduce maintenance costs of railway networks. However, given the safety-critical nature of railway signalling and the complexity of novel distributed signalling solutions, their safety should be guaranteed by using thorough system validation methods. To achieve such a high-level of safety assurance of these complex signalling systems, scenario-based testing methods are far from being sufficient despite that they are still widely used in the industry. Formal verification is an alternative approach which provides a rigorous approach to verifying complex systems and has been successfully used in the railway domain. Despite the successes, little work has been done in applying formal methods for distributed railway systems. In our research we are working towards a multifaceted formal development methodology of complex railway signalling systems. The methodology is based on the Event-B modelling language which provides an expressive modelling language, a stepwise development and a proof-based model verification. In this paper, we present the application of the methodology for the development and verification of a distributed protocol for reservation of railway sections. The main challenge of this work is developing a distributed protocol which ensures safety and liveness of the distributed railway system when message delays are allowed in the model.


Author(s):  
Sebastian Obermeier ◽  
Stefan Böttcher

A distributed protocol is presented for anonymous and secure voting that is failure-tolerant with respect to malicious behavior of individual participants and that does not rely on a trusted third party. The proposed voting protocol was designed to be executed on a fixed group of N known participants, each of them casting one vote that may be a vote for abstention. Several attack vectors on the protocol are presented, and the detection of malicious behavior like spying, suppressing, inventing, and modifying protocol messages or votes by the protocol is shown. If some participants stop the protocol, a fair information exchange is achieved in the sense that either all votes are guaranteed to be valid and accessible to all participants, or malicious behavior has been detected and the protocol is stopped, but the votes are not disclosed.


Author(s):  
Andrea E. F. Clementi ◽  
Miriam Di Ianni ◽  
Massimo Lauria ◽  
Angelo Monti ◽  
Gianluca Rossi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document