patient table
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 2 ◽  
Author(s):  
Marie-Andrée Mercier ◽  
Philippe Rousseau ◽  
Martha Funabashi ◽  
Martin Descarreaux ◽  
Isabelle Pagé

Background: Spinal manipulations (SMT) and mobilizations (MOB) are interventions commonly performed by many health care providers to manage musculoskeletal conditions. The clinical effects of these interventions are believed to be, at least in part, associated with their force-time characteristics. Numerous devices have been developed to measure the force-time characteristics of these modalities. The use of a device may be facilitated or limited by different factors such as its metrologic properties.Objectives: This mixed-method scoping review aimed to characterize the metrologic properties of devices used to measure SMT/MOB force-time characteristics and to determine which factors may facilitate or limit the use of such devices within the context of research, education and clinical practice.Methods: This study followed the Joanna Briggs Institute's framework. The literature search strategy included four concepts: (1) devices, (2) measurement of SMT or MOB force-time characteristics on humans, (3) factors facilitating or limiting the use of devices, and (4) metrologic properties. Two reviewers independently reviewed titles, abstracts and full articles to determine inclusion. To be included, studies had to report on a device metrologic property (e.g., reliability, accuracy) and/or discuss factors that may facilitate or limit the use of the device within the context of research, education or clinical practice. Metrologic properties were extracted per device. Limiting and facilitating factors were extracted and themes were identified.Results: From the 8,998 studies initially retrieved, 46 studies were finally included. Ten devices measuring SMT/MOB force-time characteristics at the clinician-patient interface and six measuring them at patient-table interfaces were identified. Between zero and eight metrologic properties were reported per device: measurement error (defined as validity, accuracy, fidelity, or calibration), reliability/repeatability, coupling/crosstalk effect, linearity/correlation, sensitivity, variability, drift, and calibration. From the results, five themes related to the facilitating and limiting factors were developed: user-friendliness and versatility, metrologic/intrinsic properties, cost and durability, technique application, and feedback.Conclusion: Various devices are available to measure SMT/MOB force-time characteristics. Metrologic properties were reported for most devices, but terminology standardization is lacking. The usefulness of a device in a particular context should be determined considering the metrologic properties as well as other potential facilitating and limiting factors.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e13588-e13588
Author(s):  
Laura Sachse ◽  
Smriti Dasari ◽  
Marc Ackermann ◽  
Emily Patnaude ◽  
Stephanie OLeary ◽  
...  

e13588 Background: Pre-screening for clinical trials is becoming more challenging as inclusion/exclusion criteria becomes increasingly complex. Oncology precision medicine provides an exciting opportunity to simplify this process and quickly match patients with trials by leveraging machine learning technology. The Tempus TIME Trial site network matches patients to relevant, open, and recruiting clinical trials, personalized to each patient’s clinical and molecular biology. Methods: Tempus screens patients at sites within the TIME Trial Network to find high-fidelity matches to clinical trials. The patient records include documentation submitted alongside NGS orders as well as electronic medical records (EMR) ingested through EMR Integrations. While Tempus-sequenced patients were automatically matched to trials using a Tempus-built matching application, EMR records were run through a natural language processing (NLP) data abstraction model to identify patients with an actionable gene of interest. Structured data were analyzed to filter to patients that lack a deceased date and have an encounter date within a predefined time period. Tempus abstractors manually validated the resulting unstructured records to ensure each patient was matched to a TIME Trial at a site capable of running the trial. For all high-level patient matches, a Tempus Clinical Navigator manually evaluated other clinical criteria to confirm trial matches and communicated with the site about trial options. Results: Patient matching was accelerated by implementing NLP gene and report detection (which isolated 17% of records) and manual screening. As a result, Tempus facilitated screening of over 190,000 patients efficiently using proprietary NLP technology to match 332 patients to 21 unique interventional clinical trials since program launch. Tempus continues to optimize its NLP models to increase high-fidelity trial matching at scale. Conclusions: The TIME Trial Network is an evolving, dynamic program that efficiently matches patients with clinical trial sites using both EMR and Tempus sequencing data. Here, we show how machine learning technology can be utilized to efficiently identify and recruit patients to clinical trials, thereby personalizing trial enrollment for each patient.[Table: see text]


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Adam Farag ◽  
R. Terry Thompson ◽  
Jonathan D. Thiessen ◽  
Frank S. Prato ◽  
Jean Théberge

Abstract Background Accurate quantification of radioactivity, measured by an integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) system, is still a challenge. One aspect of such a challenge is to correct for the hardware attenuation, such as the patient table and radio frequency (RF) resonators. For PET/MRI systems, computed tomography (CT) is commonly used to produce hardware attenuation correction (AC) maps, by converting Hounsfield units (HU) to a linear attenuation coefficients (LAC) map at the PET energy level 511 keV, using a bilinear model. The model does not address beam hardening, nor higher density materials, which can lead to inaccurate corrections. Purpose In this study, we introduce a transmission-based (TX-based) AC technique with a static Germanium-68 (Ge-68) transmission source to generate hardware AC maps using the PET/MRI system itself, without the need for PET or medical CT scanners. The AC TX-based maps were generated for a homogeneous cylinder, made of acrylic as a validator. The technique thereafter was applied to the patient table and posterior part of an RF-phased array used in cardiovascular PET/MRI imaging. The proposed TX-based, and the CT-based, hardware maps were used in reconstructing PET images of one cardiac patient, and the results were analysed and compared. Results The LAC derived by the TX-based method for the acrylic cylinder is estimated to be 0.10851 ± 0.00380 cm−1 compared to the 0.10698 ± 0.00321 cm−1 theoretical value reported in the literature. The PET photon counts were reduced by 8.7 ± 1.1% with the patient table, at the region used in cardiac scans, while the CT-based map, used for correction, over-estimated counts by 4.3 ± 1.3%. Reconstructed in vivo images using TX-based AC hardware maps have shown 4.1 ± 0.9% mean difference compared to those reconstructed images using CT-based AC. Conclusions The LAC of the acrylic cylinder measurements using the TX-based technique was in agreement with those in the literature confirming the validity of the technique. The over-estimation of photon counts caused by the CT-based model used for the patient table was improved by the TX-based technique. Therefore, TX-based AC of hardware using the PET/MRI system itself is possible and can produce more accurate images when compared to the CT-based hardware AC in cardiac PET images.


2020 ◽  
Vol 28 (1) ◽  
Author(s):  
Jérémie Mikhail ◽  
Martha Funabashi ◽  
Martin Descarreaux ◽  
Isabelle Pagé

Abstract Background Spinal manipulative therapy (SMT) and mobilization (MOB) effects are believed to be related to their force characteristics. Most previous studies have either measured the force at the patient-table interface or at the clinician-patient interface. The objectives of this study were to determine 1) the difference between the force measured at the patient-table interface and the force applied at the clinician-patient interface during thoracic SMT and MOB, and 2) the influence of the SMT/MOB characteristics, participants’ anthropometry and muscle activity (sEMG) on this difference. Methods An apparatus using a servo-linear motor executed 8 SMT/MOB at the T7 vertebrae in 34 healthy adults between May and June 2019. SMT and MOB were characterized by a 20 N preload, total peak forces of 100 N or 200 N, and thrust durations of 100 ms, 250 ms, 1 s or 2 s. During each trial, thoracic sEMG, apparatus displacement as well as forces at the patient-table interface and the clinician-patient interface were recorded. The difference between the force at both interfaces was calculated. The effect of SMT/MOB characteristics on the difference between forces at both interfaces and correlations between this difference and potential influencing factors were evaluated. Results Force magnitudes at the patient-table interface were, in most trials, greater than the force at the clinician-patient interface (up to 135 N). SMT/MOB characteristics (total peak force, thrust duration and rate of force application) affected the difference between forces at both interfaces (all p-values< 0.05). No factor showed significant correlations with the difference between forces at both interfaces for the 8 SMT/MOB. Conclusions The results revealed that the force measured at the patient-table interface is greater than the applied force at the clinician-patient interface during thoracic SMT and MOB. By which mechanism the force is amplified is not yet fully understood.


2020 ◽  
Author(s):  
Natasha Ivanova ◽  
Javor Ivanov ◽  
Bistra Manusheva ◽  
Ismet Tahsinov ◽  
Hrisimir Todorov ◽  
...  

2019 ◽  
Vol 188 (2) ◽  
pp. 199-204
Author(s):  
Y Lahfi ◽  
A Ismail

Abstract The aim of the present study was to evaluate the radiation exposure around the patient table as relative to the cardiologist position dose value. The dose rates at eight points presuming staff positions were measured for PA, LAO 30° and RAO 30° radiographic projections, and then normalized to the cardiologist’s position dose-rate value. The results show that in PA and RAO 30° projections, the normalized dose rate was higher by 9–22% at the right side of the table at a distance of 50 cm, while it was higher up to 31% at the left side for the same measured points in the LAO 30°. The differences of normalized dose rates for the both table sides were lower and decreased at farther positions. The obtained results correspond to the recommendations of staff radiation protection in Cath-labs with regards to X-ray tube and detector positions.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S865-S865 ◽  
Author(s):  
Jeannette Bouchard ◽  
Caroline Derrick ◽  
Joseph Horvath

Abstract Background It is difficult to treat multidrug-resistant (MDR) human immunodeficiency virus (HIV). Trogarzo® (ibalizumab) a novel monoclonal antibody was approved in 2018 for heavily treatment-experienced HIV patients. Data support IBA use with at least one fully active agent, an OBR. Real-world IBA data are lacking. We report a successful case of reaching and maintaining suppression with IBA in a patient without an OBR. Methods Mutations were reviewed for the patient, Table 1, and evaluated for treatment. The patient is a 52- year old male, diagnosed in 1994, with MDR HIV secondary to non-adherence. Upon re-presenting to care, the patient was non-compliant with ART. Genotypic interpretation via the Stanford/ANRS algorithm was performed and interpreted, resulting in the addition of IBA intravenous administration every other week. IBA was obtained through patient assistance and costs were covered by the institution for infusion. Results Evaluation of the resistance profile indicated varying resistance to all available ART. More specifically, high-level resistance to all FDA-approved INSTIs, PIs, and low to high-level resistance to all NNRTIs and NRTIs. Table 2 outlines the ART history and viral load (VL) trends. The patient was initiated on daruanvir/ritonavir twice daily, etravirine twice daily, emtricitabine/tenofovir alafenamide and did not reach suppression. IBA was added off-label to a failing regimen. The patient reached VS (VL < 200 copies/mL) at Week 4 and has had an undetectable VL for 8 weeks. Notably his CD4 count has risen to 46, first detectable number since re-presenting to care. Conclusion We describe a heavily treatment experienced patient with an MDR HIV virus who achieved an undetectable VL without an OBT and the addition of intravenous IBA. Fostemsavir, was utilized in IBA’s phase III trial for similar patients, however, it is not currently FDA-approved nor available. Further data are needed to ensure continued susceptibility to IBA without an OBT. This patient required high-level coordination to reach each visit and receive this therapy alongside his oral agents. We conclude, IBA has allowed this patient to reach and maintain VS. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 60 (4) ◽  
pp. 527-537
Author(s):  
Takayuki Hashimoto ◽  
Shinichi Shimizu ◽  
Seishin Takao ◽  
Shunsuke Terasaka ◽  
Akihiro Iguchi ◽  
...  

Abstract The outcomes of intensity-modulated proton craniospinal irradiation (ipCSI) are unclear. We evaluated the clinical benefit of our newly developed ipCSI system that incorporates two gantry-mounted orthogonal online X-ray imagers with a robotic six-degrees-of-freedom patient table. Nine patients (7–19 years old) were treated with ipCSI. The prescribed dose for CSI ranged from 23.4 to 36.0 Gy (relative biological effectiveness) in 13–20 fractions. Four adolescent and young adult (AYA) patients (15 years or older) were treated with vertebral-body-sparing ipCSI (VBSipCSI). Myelosuppression following VBSipCSI was compared with that of eight AYA patients treated with photon CSI at the same institution previously. The mean homogeneity index (HI) in the nine patients was 0.056 (95% confidence interval: 0.044–0.068). The mean time from the start to the end of all beam delivery was 37 min 39 s ± 2 min 24 s (minimum to maximum: 22 min 49 s – 42 min 51 s). The nadir white blood cell, hemoglobin, and platelet levels during the 4 weeks following the end of the CSI were significantly higher in the VBSipCSI group than in the photon CSI group (P = 0.0071, 0.0453, 0.0024, respectively). The levels at 4 weeks after the end of CSI were significantly higher in the VBSipCSI group than in the photon CSI group (P = 0.0023, 0.0414, 0.0061). Image-guided ipCSI was deliverable in a reasonable time with sufficient HI. Using VBSipCSI, AYA patients experienced a lower incidence of serious acute hematological toxicity than AYA patients treated with photon CSI.


Sign in / Sign up

Export Citation Format

Share Document