Scalable and parameterized hardware implementation of elliptic curve digital signature algorithm over prime fields

Author(s):  
Bhanu Panjwani
Author(s):  
R. Anitha ◽  
R. S. Sankarasubramanian

This chapter presents a new simple scheme for verifiable encryption of elliptic curve digital signature algorithm (ECDSA). The protocol we present is an adjudicated protocol, that is, the trusted third party (TTP) takes part in the protocol only when there is a dispute. This scheme can be used to build efficient fair exchanges and certified email protocols. In this paper we also present the implementation issues. We present a new algorithm for multiplying two 2n bits palindromic polynomials modulo xp–1 for prime p = 2n + 1 for the concept defined in Blake, Roth, and Seroussi (1998), and it is compared with the Sunar-Koc parallel multiplier given in Sunar and Koc (2001).


2018 ◽  
Vol 10 (3) ◽  
pp. 42-60 ◽  
Author(s):  
Sahar A. El-Rahman ◽  
Daniyah Aldawsari ◽  
Mona Aldosari ◽  
Omaimah Alrashed ◽  
Ghadeer Alsubaie

IoT (Internet of Things) is regarded as a diversified science and utilization with uncommon risks and opportunities of business. So, in this article, a digital signature mobile application (SignOn) is presented where, it provides a cloud based digital signature with a high security to sustain with the growth of IoT and the speed of the life. Different algorithms were utilized to accomplish the integrity of the documents, authenticate users with their unique signatures, and encrypt their documents in order to provide the best adopted solution for cloud-based signature in the field of IoT. Where, ECDSA (Elliptic Curve Digital Signature Algorithm) is utilized to ensure the message source, Hash function (SHA-512) is used to detect all information variations, and AES (Advanced Encryption Standard) is utilized for more security. SignOn is considered as a legal obligated way of signing contracts and documents, keeping the data in electronic form in a secure cloud environment and shortens the duration of the signing process. Whereas, it allows the user to sign electronic documents and then, the verifier can validate the produced signature.


2013 ◽  
Vol 427-429 ◽  
pp. 806-809 ◽  
Author(s):  
Lei Wang ◽  
Yan Yan Yu ◽  
Qian Huang ◽  
Jun Yang ◽  
Zheng Peng Zhao

This paper introduces the principle of digital signature algorithm MD5, focused on the calculation phase of the algorithm, the algorithm structure iteration of the loop, and to optimize its calculation phase, and given FPGA design icon, the experiment can be drawn based on FPGA with less resource, fast implementation of the MD5 algorithm. The hardware implementation of the MD5 hash algorithm HMACs build encryption accelerator which has some practical value.


2001 ◽  
Vol 1 (1) ◽  
pp. 36-63 ◽  
Author(s):  
Don Johnson ◽  
Alfred Menezes ◽  
Scott Vanstone

Sign in / Sign up

Export Citation Format

Share Document