A Review on Community Detection algorithms and Evaluation Measures in Social Networks

Author(s):  
P. Ponveni ◽  
J. Visumathi
Author(s):  
S Rao Chintalapudi ◽  
M. H. M. Krishna Prasad

Community Structure is one of the most important properties of social networks. Detecting such structures is a challenging problem in the area of social network analysis. Community is a collection of nodes with dense connections than with the rest of the network. It is similar to clustering problem in which intra cluster edge density is more than the inter cluster edge density. Community detection algorithms are of two categories, one is disjoint community detection, in which a node can be a member of only one community at most, and the other is overlapping community detection, in which a node can be a member of more than one community. This chapter reviews the state-of-the-art disjoint and overlapping community detection algorithms. Also, the measures needed to evaluate a disjoint and overlapping community detection algorithms are discussed in detail.


2009 ◽  
Vol 23 (17) ◽  
pp. 2089-2106 ◽  
Author(s):  
ZHONGMIN XIONG ◽  
WEI WANG

Many networks, including social and biological networks, are naturally divided into communities. Community detection is an important task when discovering the underlying structure in networks. GN algorithm is one of the most influential detection algorithms based on betweenness scores of edges, but it is computationally costly, as all betweenness scores need to be repeatedly computed once an edge is removed. This paper presents an algorithm which is also based on betweenness scores but more than one edge can be removed when all betweenness scores have been computed. This method is motivated by the following considerations: many components, divided from networks, are independent of each other in their recalculation of betweenness scores and their split into smaller components. It is shown that this method is fast and effective through theoretical analysis and experiments with several real data sets, which have acted as test beds in many related works. Moreover, the version of this method with the minor adjustments allows for the discovery of the communities surrounding a given node without having to compute the full community structure of a graph.


Author(s):  
S Rao Chintalapudi ◽  
H. M. Krishna Prasad M

Social network analysis is one of the emerging research areas in the modern world. Social networks can be adapted to all the sectors by using graph theory concepts such as transportation networks, collaboration networks, and biological networks and so on. The most important property of social networks is community, collection of nodes with dense connections inside and sparse connections at outside. Community detection is similar to clustering analysis and has many applications in the real-time world such as recommendation systems, target marketing and so on. Community detection algorithms are broadly classified into two categories. One is disjoint community detection algorithms and the other is overlapping community detection algorithms. This chapter reviews overlapping community detection algorithms with their strengths and limitations. To evaluate these algorithms, a popular synthetic network generator, i.e., LFR benchmark generator and the new extended quality measures are discussed in detail.


2021 ◽  
Author(s):  
Xi Chen ◽  
Ralf van der Lans ◽  
Michael Trusov

This paper presents a structural discrete choice model with social influence for large-scale social networks. The model is based on an incomplete information game and permits individual-specific parameters of consumers. It is challenging to apply this type of models to real-life scenarios for two reasons: (1) The computation of the Bayesian–Nash equilibrium is highly demanding; and (2) the identification of social influence requires the use of excluded variables that are oftentimes unavailable. To address these challenges, we derive the unique equilibrium conditions of the game, which allow us to employ a stochastic Bayesian estimation procedure that is scalable to large social networks. To facilitate the identification, we utilize community-detection algorithms to divide the network into different groups that, in turn, can be used to construct excluded variables. We validate the proposed structural model with the login decisions of more than 25,000 users of an online social game. Importantly, this data set also contains promotions that were exogenously determined and targeted to only a subgroup of consumers. This information allows us to perform exogeneity tests to validate our identification strategy using community-detection algorithms. Finally, we demonstrate the managerial usefulness of the proposed methodology for improving the strategies of targeting influential consumers in large social networks. This paper was accepted by Matthew Shum, marketing.


2014 ◽  
Vol 89 ◽  
pp. 1208-1215 ◽  
Author(s):  
E. Campbell ◽  
D. Ayala-Cabrera ◽  
J. Izquierdo ◽  
R. Pérez-García ◽  
M. Tavera

Sign in / Sign up

Export Citation Format

Share Document