Nature inspired link prediction and community detection algorithms for social networks: a survey

Author(s):  
Srilatha Pulipati ◽  
Ramasubbareddy Somula ◽  
Balakesava Reddy Parvathala
Author(s):  
S Rao Chintalapudi ◽  
M. H. M. Krishna Prasad

Community Structure is one of the most important properties of social networks. Detecting such structures is a challenging problem in the area of social network analysis. Community is a collection of nodes with dense connections than with the rest of the network. It is similar to clustering problem in which intra cluster edge density is more than the inter cluster edge density. Community detection algorithms are of two categories, one is disjoint community detection, in which a node can be a member of only one community at most, and the other is overlapping community detection, in which a node can be a member of more than one community. This chapter reviews the state-of-the-art disjoint and overlapping community detection algorithms. Also, the measures needed to evaluate a disjoint and overlapping community detection algorithms are discussed in detail.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Saeed Reza Shahriary ◽  
Mohsen Shahriari ◽  
Rafidah MD Noor

In signed social networks, relationships among nodes are of the types positive (friendship) and negative (hostility). One absorbing issue in signed social networks is predicting sign of edges among people who are members of these networks. Other than edge sign prediction, one can define importance of people or nodes in networks via ranking algorithms. There exist few ranking algorithms for signed graphs; also few studies have shown role of ranking in link prediction problem. Hence, we were motivated to investigate ranking algorithms availed for signed graphs and their effect on sign prediction problem. This paper makes the contribution of using community detection approach for ranking algorithms in signed graphs. Therefore, community detection which is another active area of research in social networks is also investigated in this paper. Community detection algorithms try to find groups of nodes in which they share common properties like similarity. We were able to devise three community-based ranking algorithms which are suitable for signed graphs, and also we evaluated these ranking algorithms via sign prediction problem. These ranking algorithms were tested on three large-scale datasets: Epinions, Slashdot, and Wikipedia. We indicated that, in some cases, these ranking algorithms outperform previous works because their prediction accuracies are better.


2009 ◽  
Vol 23 (17) ◽  
pp. 2089-2106 ◽  
Author(s):  
ZHONGMIN XIONG ◽  
WEI WANG

Many networks, including social and biological networks, are naturally divided into communities. Community detection is an important task when discovering the underlying structure in networks. GN algorithm is one of the most influential detection algorithms based on betweenness scores of edges, but it is computationally costly, as all betweenness scores need to be repeatedly computed once an edge is removed. This paper presents an algorithm which is also based on betweenness scores but more than one edge can be removed when all betweenness scores have been computed. This method is motivated by the following considerations: many components, divided from networks, are independent of each other in their recalculation of betweenness scores and their split into smaller components. It is shown that this method is fast and effective through theoretical analysis and experiments with several real data sets, which have acted as test beds in many related works. Moreover, the version of this method with the minor adjustments allows for the discovery of the communities surrounding a given node without having to compute the full community structure of a graph.


Author(s):  
S Rao Chintalapudi ◽  
H. M. Krishna Prasad M

Social network analysis is one of the emerging research areas in the modern world. Social networks can be adapted to all the sectors by using graph theory concepts such as transportation networks, collaboration networks, and biological networks and so on. The most important property of social networks is community, collection of nodes with dense connections inside and sparse connections at outside. Community detection is similar to clustering analysis and has many applications in the real-time world such as recommendation systems, target marketing and so on. Community detection algorithms are broadly classified into two categories. One is disjoint community detection algorithms and the other is overlapping community detection algorithms. This chapter reviews overlapping community detection algorithms with their strengths and limitations. To evaluate these algorithms, a popular synthetic network generator, i.e., LFR benchmark generator and the new extended quality measures are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document