A Task Space Decomposition Algorithm for the Inverse Kinematics of Functionally Redundant Manipulators*

Author(s):  
Leon Zlajpah ◽  
Andreas Muller
2018 ◽  
Vol 28 (3) ◽  
pp. 483-492
Author(s):  
Ignacy Duleba ◽  
Iwona Karcz-Duleba ◽  
Arkadiusz Mielczarek

Abstract A repeatable inverse kinematic task in robot manipulators consists in finding a loop (cyclic trajectory) in a configuration space, which corresponds to a given loop in a task space. In the robotic literature, an entry configuration to the trajectory is fixed and given by a user. In this paper the assumption is released and a new, indirect method is introduced to find entry configurations generating short trajectories. The method avoids a computationally expensive evaluation of (infinite) many entry configurations for redundant manipulators (for each of them, repeatable inverse kinematics should be run). Some fast-to-compute functions are proposed to evaluate entry configurations and their correlations with resulting lengths of trajectories are computed. It appears that only an original function, based on characteristics of a manipulability subellipsoid, properly distinguishes entry configurations that generate short trajectories. This function can be used either to choose one from a few possible entry configurations or as an optimized function to compute the best initial configuration.


Author(s):  
Anirban Sinha ◽  
Nilanjan Chakraborty

Abstract Robotic tasks, like reaching a pre-grasp configuration, are specified in the end effector space or task space, whereas, robot motion is controlled in joint space. Because of inherent actuation errors in joint space, robots cannot achieve desired configurations in task space exactly. Furthermore, different inverse kinematics (IK) solutions map joint space error set to task space differently. Thus for a given task with a prescribed error tolerance, all IK solutions will not be guaranteed to successfully execute the task. Any IK solution that is guaranteed to execute a task (possibly with high probability) irrespective of the realization of the joint space error is called a robust IK solution. In this paper we formulate and solve the robust inverse kinematics problem for redundant manipulators with actuation uncertainties (errors). We also present simulation and experimental results on a 7-DoF redundant manipulator for two applications, namely, a pre-grasp positioning and a pre-insertion positioning scenario. Our results show that the robust IK solutions result in higher success rates and also allows the robot to self-evaluate how successful it might be in any application scenario.


2021 ◽  
Vol 11 (5) ◽  
pp. 2346
Author(s):  
Alessandro Tringali ◽  
Silvio Cocuzza

The minimization of energy consumption is of the utmost importance in space robotics. For redundant manipulators tracking a desired end-effector trajectory, most of the proposed solutions are based on locally optimal inverse kinematics methods. On the one hand, these methods are suitable for real-time implementation; nevertheless, on the other hand, they often provide solutions quite far from the globally optimal one and, moreover, are prone to singularities. In this paper, a novel inverse kinematics method for redundant manipulators is presented, which overcomes the above mentioned issues and is suitable for real-time implementation. The proposed method is based on the optimization of the kinetic energy integral on a limited subset of future end-effector path points, making the manipulator joints to move in the direction of minimum kinetic energy. The proposed method is tested by simulation of a three degrees of freedom (DOF) planar manipulator in a number of test cases, and its performance is compared to the classical pseudoinverse solution and to a global optimal method. The proposed method outperforms the pseudoinverse-based one and proves to be able to avoid singularities. Furthermore, it provides a solution very close to the global optimal one with a much lower computational time, which is compatible for real-time implementation.


Robotica ◽  
2015 ◽  
Vol 34 (12) ◽  
pp. 2669-2688 ◽  
Author(s):  
Wenfu Xu ◽  
Lei Yan ◽  
Zonggao Mu ◽  
Zhiying Wang

SUMMARYAn S-R-S (Spherical-Revolute-Spherical) redundant manipulator is similar to a human arm and is often used to perform dexterous tasks. To solve the inverse kinematics analytically, the arm-angle was usually used to parameterise the self-motion. However, the previous studies have had shortcomings; some methods cannot avoid algorithm singularity and some are unsuitable for configuration control because they use a temporary reference plane. In this paper, we propose a method of analytical inverse kinematics resolution based on dual arm-angle parameterisation. By making use of two orthogonal vectors to define two absolute reference planes, we obtain two arm angles that satisfy a specific condition. The algorithm singularity problem is avoided because there is always at least one arm angle to represent the redundancy. The dual arm angle method overcomes the shortcomings of traditional methods and retains the advantages of the arm angle. Another contribution of this paper is the derivation of the absolute reference attitude matrix, which is the key to the resolution of analytical inverse kinematics but has not been previously addressed. The simulation results for typical cases that include the algorithm singularity condition verified our method.


Robotica ◽  
2008 ◽  
Vol 26 (6) ◽  
pp. 791-802 ◽  
Author(s):  
Flavio Firmani ◽  
Alp Zibil ◽  
Scott B. Nokleby ◽  
Ron P. Podhorodeski

SUMMARYThis paper is organized in two parts. In Part I, the wrench polytope concept is presented and wrench performance indices are introduced for planar parallel manipulators (PPMs). In Part II, the concept of wrench capabilities is extended to redundant manipulators and the wrench workspace of different PPMs is analyzed. The end-effector of a PPM is subject to the interaction of forces and moments. Wrench capabilities represent the maximum forces and moments that can be applied or sustained by the manipulator. The wrench capabilities of PPMs are determined by a linear mapping of the actuator output capabilities from the joint space to the task space. The analysis is based upon properly adjusting the actuator outputs to their extreme capabilities. The linear mapping results in a wrench polytope. It is shown that for non-redundant PPMs, one actuator output capability constrains the maximum wrench that can be applied (or sustained) with a plane in the wrench space yielding a facet of the polytope. Herein, the determination of wrench performance indices is presented without the expensive task of generating polytopes. Six study cases are presented and performance indices are derived for each study case.


Sign in / Sign up

Export Citation Format

Share Document