Evolution of Odometry Calibration Methods for Ground Mobile Robots

Author(s):  
Ricardo B. Sousa ◽  
Marcelo R. Petry ◽  
Antonio Paulo Moreira
2014 ◽  
Vol 9 (3) ◽  
pp. 160-169 ◽  
Author(s):  
Changbae Jung ◽  
Changbae Moon ◽  
Daun Jung ◽  
Woojin Chung

Robotica ◽  
2013 ◽  
Vol 32 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Paulo A. Jiménez ◽  
Bijan Shirinzadeh

SUMMARYA widely used method for pose estimation in mobile robots is odometry. Odometry allows the robot in real time to reconstruct its position and orientation from the wheels' encoder measurements. Given to its unbounded nature, odometry calculation accumulates errors with quadratic increase of error variance with traversed distance. This paper develops a novel method for odometry calibration and error propagation identification for mobile robots. The proposed method uses a laser-based interferometer to measure distance precisely. Two variants of the proposed calibration method are examined: the two-parameter model and the three-parameter model. Experimental results obtained using a Khepera 3 mobile robot showed that both methods significantly increase accuracy of the pose estimation, validating the effectiveness of the proposed calibration method.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3623 ◽  
Author(s):  
Nachaya Chindakham ◽  
Young-Yong Kim ◽  
Alongkorn Pirayawaraporn ◽  
Mun-Ho Jeong

In the field of robot navigation, the odometric parameters, such as wheel radii and wheelbase length, and the relative pose of the optical sensing camera with respect to the robot are very important criteria for accurate operation. Hence, these parameters are necessary to be estimated for more precise operation. However, the odometric and head-eye parameters are typically estimated separately, which is an inconvenience and requires longer calibration time. Even though several researchers have proposed simultaneous calibration methods that obtain both odometric and head-eye parameters simultaneously to reduce the calibration time, they are only applicable to a mobile robot with a fixed camera mounted, not for mobile robots equipped with a pan-tilt motorized camera systems, which is a very common configuration and widely used for wide view. Previous approaches could not provide the z-axis translation parameter between head-eye coordinate systems on mobile robots equipped with a pan-tilt camera. In this paper, we present a full simultaneous mobile robot calibration of head–eye and odometric parameters, which is appropriate for a mobile robot equipped with a camera mounted on the pan-tilt motorized device. After a set of visual features obtained from a chessboard or natural scene and the odometry measurements are synchronized and received, both odometric and head-eye parameters are iteratively adjusted until convergence prior to using a nonlinear optimization method for more accuracy.


2012 ◽  
Vol 132 (3) ◽  
pp. 381-388
Author(s):  
Takaaki Imaizumi ◽  
Hiroyuki Murakami ◽  
Yutaka Uchimura

Sign in / Sign up

Export Citation Format

Share Document