Domestic Wastewater Treatment Using Sequencing Batch Biofilm Reactor in Low Temperature

Author(s):  
Jinte Zou ◽  
Longqiang Ma ◽  
Zhiqiang Su ◽  
Danli Huang ◽  
Jun Li
Chemosphere ◽  
2018 ◽  
Vol 191 ◽  
pp. 946-953 ◽  
Author(s):  
Zhenzhen Xu ◽  
Yue Ben ◽  
Zhonglin Chen ◽  
Anxi Jiang ◽  
Jimin Shen ◽  
...  

2019 ◽  
Vol 5 (1) ◽  
pp. 70-82 ◽  
Author(s):  
Evangelos Petropoulos ◽  
Yongjie Yu ◽  
Shamas Tabraiz ◽  
Aminu Yakubu ◽  
Thomas P. Curtis ◽  
...  

To choose the reactor format in which to employ a low temperature adapted seed for wastewater treatment, we compared a UASB and an AnMBRUASB (UF)reactor at low HRT and temperature (15 °C).


2004 ◽  
Vol 48 (11-12) ◽  
pp. 299-307 ◽  
Author(s):  
T.W. Li ◽  
Y.Z. Peng ◽  
Y.Y. Wang ◽  
G.B. Zhu ◽  
W.Q. Chi ◽  
...  

A novel wastewater treatment technology combining a sequencing batch biofilm reactor and biological filtration in an SBBR-BF system was presented. Elastic plastic filaments were fixed as biofilms carrying media. Particle materials (sand or anthracite) and the settled sludge constituted the filtration layer. In the laboratory studies, operating results of SBR, SBBR and SBBR-BF were compared. Better quality and stable water quality of effluent could be achieved in SBBR-BF because the fixed film and filtration layer were added in the reactor. Other laboratory experiment results indicated that slow filtration, cycle water stirring and backwashing making use of the settled supernatant are successful methods for preventing clogging and saving energy. The velocity and headloss of filtration were significantly impacted by different MLSS concentration. The MLSS concentration in the reactor must be less than 1,400 mg/L for optimal results. The average velocity of filtration ranging from 0.6 to 1.0 m/h, the backwash velocity of 10–15 m/h and the backwash time of 20 seconds are recommended according to the laboratory experiment. On-site experiment and study showed that SBBR-BF is a stable and efficient system for domestic wastewater treatment, and is particularly suited for small wastewater treatment plants, because of the simple operation and compact installation.


2019 ◽  
Vol 25 (5) ◽  
pp. 652-658
Author(s):  
Huynh Tan Nhut ◽  
Nguyen Tri Quang Hung ◽  
Tran Cong Sac ◽  
Nguyen Huynh Khanh Bang ◽  
Tran Quang Tri ◽  
...  

This study evaluates the efficiency of domestic wastewater treatment via Sponge-Based Moving Bed Biofilm Reactor (S-MBBR). The laboratory-based treatment plan uses polyurethane sponge with a specific surface area was 260 m<sup>2</sup>/m<sup>3</sup> as a carrier. The treatment plan operated under four different organic load rate: OLR1 = 0.4 kg BOD/m<sup>3</sup>.day; OLR2 = 0.6 kg BOD/m<sup>3</sup>.day; OLR3 = 0.8 kg BOD/m<sup>3</sup>.day; and OLR4 = 1.0 kg BOD/m<sup>3</sup>.day. During 80 d of the experiment, the highest treatment efficiency was at the organic load rate of 0.4 kg BOD/m<sup>3</sup>.day, with COD, SS, TN and TP were found to be 85.0 ± 12.9%, 85.7 ± 5.3%, 68.9 ± 1.7%, and 40.3 ± 0.2%, respectively. In which, the influent SS concentration were from 117.3 to 126.0 mg/L, the effluent concentration were in ranged 18.0 to 34.22 mg/L, respectively. The values of influent and effluent COD were 298.8 ± 12.88 and 44.8 ± 3.78 mg/L in turn. The OLR1 influent TN, TP concentrations were respectively 47.9 ± 2.11 and 3.6 ± 0.15 mg/L; the effluent TN, TP concentration were 14.9 ± 0.18 and 2.2 ± 0.06 mg/L, respectively. The study suggests that the effluent is within the allowable limits of National technical regulation on domestic wastewater (Column B1), indicating the applicability of S-MBBR for the domestic wastewater treatment plant.


2005 ◽  
Vol 51 (10) ◽  
pp. 85-92 ◽  
Author(s):  
C. Chiemchaisri ◽  
K. Yamamoto

Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid–liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 °C. As the temperature was stepwise decreased from 25 to 5 °C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 °C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2–3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.


2018 ◽  
Vol 135 ◽  
pp. 71-78 ◽  
Author(s):  
Shengnan Xu ◽  
Lei Zhang ◽  
Shengle Huang ◽  
Grietje Zeeman ◽  
Huub Rijnaarts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document