Research on small mobile water quality online monitoring device

Author(s):  
Shangchao Deng ◽  
Jiang Yang ◽  
Yu Wu ◽  
Jiangang Lu
Author(s):  
Muhammad Farooq Saleem Khan ◽  
Mona Akbar ◽  
Jing Wu ◽  
Zhou Xu

Abstract In recent years, the application of fluorescence spectroscopy has been widely recognized in water environment studies. The sensitiveness, simplicity, and efficiency of fluorescence spectroscopy are proved to be a promising tool for effective monitoring of water and wastewater. The fluorescence excitation-emission matrix (EEMs) and synchronous fluorescence spectra have been widely used analysis techniques of fluorescence measurement. The presence of organic matter in water and wastewater defines the degree and type of pollution in water. The application of fluorescence spectroscopy to characterize dissolved organic matter (DOM) has made the water quality assessment simple and easy. With the recent advances in this technology, components of DOM are identified by employing parallel factor analysis (PARAFAC), a mathematical trilinear data modeling with EEMs. The majority of wastewater studies indicated that the fluorescence peak of EX/EM at 275nm/340nm is referred to tryptophan region (Peak T1). However, some researchers identified another fluorescence peak in the region of EX/EM at 225-237nm/340-381nm, which described the tryptophan region and labeled it as Peak T2. Generally, peak T is a protein-like component in the water sample, where T1 and T2 signals were derived from the <0.20µm fraction of pollution. Therefore, a more advanced approach, such as an online fluorescence spectrofluorometer, can be used for the online monitoring of water. The results of various waters studied by fluorescence spectroscopy indicate that changes in peak T intensity could be used for real-time wastewater quality assessment and process control of wastewater treatment works. Finally, due to its effective use in water quality assessment, the fluorescence technique is proved to be a surrogate online monitoring tool and early warning equipment.


Author(s):  
Aleksandra Ziemińska-Stolarska ◽  
Mirosław Imbierowicz ◽  
Marcin Jaskulski ◽  
Aleksander Szmidt ◽  
Ireneusz Zbiciński

Keywords: online monitoring; dam reservoir; water quality; multi-parameter probe; eutrophication


2010 ◽  
Vol 71 ◽  
pp. S3-S9 ◽  
Author(s):  
Xiuna Zhu ◽  
Daoliang Li ◽  
Dongxian He ◽  
Jianqin Wang ◽  
Daokun Ma ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dibo Hou ◽  
Shu Liu ◽  
Jian Zhang ◽  
Fang Chen ◽  
Pingjie Huang ◽  
...  

This study proposes a probabilistic principal component analysis- (PPCA-) based method for online monitoring of water-quality contaminant events by UV-Vis (ultraviolet-visible) spectroscopy. The purpose of this method is to achieve fast and sound protection against accidental and intentional contaminate injection into the water distribution system. The method is achieved first by properly imposing a sliding window onto simultaneously updated online monitoring data collected by the automated spectrometer. The PPCA algorithm is then executed to simplify the large amount of spectrum data while maintaining the necessary spectral information to the largest extent. Finally, a monitoring chart extensively employed in fault diagnosis field methods is used here to search for potential anomaly events and to determine whether the current water-quality is normal or abnormal. A small-scale water-pipe distribution network is tested to detect water contamination events. The tests demonstrate that the PPCA-based online monitoring model can achieve satisfactory results under the ROC curve, which denotes a low false alarm rate and high probability of detecting water contamination events.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Heru Dwi Wahjono

Recent water quality decrease has caused difficult in finding clean water source for people and their daily life. Monitoring on water quality had been carried out many times, from up stream to down stream. It’s necessary to do Online Monitoring on ground and underground water quality continuously, so that the effect of water quality decrease could be detected earlier and handle directly. The output of water quality data needs to be processed so that the society and the decision makers could see the information publicly. So, we need a design of structured database of online and real-time water quality data processing. Water quality data management using structured data base system could make water source data retracing easier. Katakunci : database struktur, online monitoring, real time monitoring 


Sign in / Sign up

Export Citation Format

Share Document