TAS: A Rehabilitation Training and Administration System Designed for Upper Limb Rehabilitation Robot

Author(s):  
Jiao Li ◽  
Shen Zhou ◽  
Hongliu Yu
2020 ◽  
pp. 1-17
Author(s):  
Qing Sun ◽  
Shuai Guo ◽  
Leigang Zhang

BACKGROUND: The definition of rehabilitation training trajectory is of great significance during rehabilitation training, and the dexterity of human-robot interaction motion provides a basis for selecting the trajectory of interaction motion. OBJECTIVE: Aimed at the kinematic dexterity of human-robot interaction, a velocity manipulability ellipsoid intersection volume (VMEIV) index is proposed for analysis, and the dexterity distribution cloud map is obtained with the human-robot cooperation space. METHOD: Firstly, the motion constraint equation of human-robot interaction is established, and the Jacobian matrix is obtained based on the speed of connecting rod. Then, the Monte Carlo method and the cell body segmentation method are used to obtain the collaborative space of human-robot interaction, and the VMEIV of human-robot interaction is solved in the cooperation space. Finally, taking the upper limb rehabilitation robot as the research object, the dexterity analysis of human-robot interaction is carried out by using the index of the approximate volume of the VMEIV. RESULTS: The results of the simulation and experiment have a certain consistency, which indicates that the VMEIV index is effective as an index of human-robot interaction kinematic dexterity. CONCLUSIONS: The VMEIV index can measure the kinematic dexterity of human-robot interaction, and provide a reference for the training trajectory selection of rehabilitation robot.


2013 ◽  
Vol 310 ◽  
pp. 477-480 ◽  
Author(s):  
Gang Yu ◽  
Jin Wu Qian ◽  
Lin Yong Shen ◽  
Ya Nan Zhang

In traditional iatrical method, the patients with hemiplegia were assisted mainly by medical personnel to complete rehabilitation training. To make the medical personnel work easily and improve the effect of rehabilitation training, the rehabilitation robot was adopted. And the control system of a four DOF upper limb rehabilitation robot was designed based on impedance control to assist the patients with hemiplegia to complete rehabilitation training after the kinematic and kinetic analysis was finished. Then finished the analysis, simulation, and experiment of monarticular movement and multiarticulate movement after the analyzing the algorithm to tested the control system. The control system based on impedance control of the upper limb rehabilitation robot can realize the passive training which followed the planning trajectory, and active training which followed patients’ awareness of movement.


2018 ◽  
pp. 1267-1287
Author(s):  
Wei Wei

This chapter mainly introduced the virtual reality as many benefits of robots involved in disability rehabilitation. According to the vision feedback and force feedback, the therapist can adjust his operation. Virtual reality technology can provide repeated practice, performance feedback and motivation techniques for rehabilitation training. Patients can learn motor skills in a virtual environment, and then transfer the skills to the real world. It is hopeful to achieve satisfactory outcome in the field of rehabilitation in the future. VR is mainly used for the upper-limb rehabilitation robot system in this article. The objective of robotic systems for disability rehabilitation are explored to divide the whole rehabilitation training process into three parts, earliest rehabilitation training, medium-term rehabilitation training and late rehabilitation training, respectively. Accordingly, brain-computer training modes, the master-slave training modes and the electromyogram (EMG) signals training modes are developed to be used in rehabilitation training to help stroke patients with hemiplegia to restore the motor function of upper limb. Aimed at the rehabilitation goal, three generations of VR rehabilitation system has designed. The first generation of VR rehabilitation system includes haptic device (PHANTOM Omni), an advanced inertial sensor (MTx) and a computer. The impaired hand grip the stylus of haptic device, the intact hand can control the impaired hand's motion based on the virtual reality scene. The second generation of the VR rehabilitation system is the exoskeleton robots structure. Two virtual upper limbs are portrayed in the virtual environment, simulated the impaired hand and the intact hand, respectively. The third generation is a novel VR-based upper limb rehabilitation robot system. In the system, the realization of virtual reality environment is implemented, which can potentially motivate patients to exercise for longer periods of time. Not only virtual images but also position and force information are sent to the doctors. The development of this system can be a promising approach for further research in the field of tele-rehabilitation science.


Author(s):  
Wei Wei

This chapter mainly introduced the virtual reality as many benefits of robots involved in disability rehabilitation. According to the vision feedback and force feedback, the therapist can adjust his operation. Virtual reality technology can provide repeated practice, performance feedback and motivation techniques for rehabilitation training. Patients can learn motor skills in a virtual environment, and then transfer the skills to the real world. It is hopeful to achieve satisfactory outcome in the field of rehabilitation in the future. VR is mainly used for the upper-limb rehabilitation robot system in this article. The objective of robotic systems for disability rehabilitation are explored to divide the whole rehabilitation training process into three parts, earliest rehabilitation training, medium-term rehabilitation training and late rehabilitation training, respectively. Accordingly, brain-computer training modes, the master-slave training modes and the electromyogram (EMG) signals training modes are developed to be used in rehabilitation training to help stroke patients with hemiplegia to restore the motor function of upper limb. Aimed at the rehabilitation goal, three generations of VR rehabilitation system has designed. The first generation of VR rehabilitation system includes haptic device (PHANTOM Omni), an advanced inertial sensor (MTx) and a computer. The impaired hand grip the stylus of haptic device, the intact hand can control the impaired hand's motion based on the virtual reality scene. The second generation of the VR rehabilitation system is the exoskeleton robots structure. Two virtual upper limbs are portrayed in the virtual environment, simulated the impaired hand and the intact hand, respectively. The third generation is a novel VR-based upper limb rehabilitation robot system. In the system, the realization of virtual reality environment is implemented, which can potentially motivate patients to exercise for longer periods of time. Not only virtual images but also position and force information are sent to the doctors. The development of this system can be a promising approach for further research in the field of tele-rehablitation science.


2020 ◽  
Vol 10 (19) ◽  
pp. 6684 ◽  
Author(s):  
Leigang Zhang ◽  
Shuai Guo ◽  
Qing Sun

Robot-assisted rehabilitation therapy has been proven to effectively improve upper limb motor function and daily behavior of patients with motor dysfunction, and the demand has increased at every stage of the rehabilitation recovery. According to the motor relearning program theory, upper limb motor dysfunction can be restored by a certain amount of repetitive training. Robotics devices can be an approach to accelerate the rehabilitation process by maximizing the patients’ training intensity. This paper develops a new end-effector upper limb rehabilitation robot (EULRR) first and then presents a controller that is suitable for the assist-as-needed (AAN) training of the patients when performing the rehabilitation training. The AAN controller is a strategy that helps the patient’s arm to stay close to the given trajectory while allowing for spatial freedom. This controller enables the patient’s arm to have spatial freedom by constructing a virtual channel around the predetermined training trajectory. Patients could move their arm freely in the allowed virtual channel during rehabilitation training while the robot provides assistance when deviating from the virtual channel. The AAN controller is preliminarily tested with a healthy male subject in different conditions based on the EULRR. The experimental results demonstrate that the proposed AAN controller could provide assistance when moving out of the virtual channel and provide no assistance when moving along the trajectory within the virtual channel. In the close future, the controller is planned to be used in elderly volunteers and help to increase the intensity of the rehabilitation therapy by assisting the arm movement and by provoking active participation.


Author(s):  
LEIGANG ZHANG ◽  
SHUAI GUO ◽  
QING SUN

Studies have shown that rehabilitation training with the unaffected side guiding affected side is more consistent with the natural movement pattern of human upper limb compared with unilateral rehabilitation training, which is conducive to improve rehabilitation effect of the affected limb motor function. In this paper, a bilateral end-effector upper limb rehabilitation robot (BEULRR) based on two modern commercial manipulators is developed first, then the kinematics, reachability, and dexterity analysis of BEULRR are performed, respectively. Finally, a bilateral symmetric training protocol with the unaffected side guiding the affected side is proposed and evaluated through healthy human subject experiment testing based on BEULRR. The simulation results show that the developed BEULRR could perform spatial rehabilitation training and its rehabilitation training workspace can fully cover the physiological workspace of human upper limb. The preliminary experiment results from the healthy human subject show that the BEULRR system could provide reliable bilateral symmetric training protocol. These simulation and experiment results demonstrated that the developed BEULRR system could be used in bilateral rehabilitation training application, and also show that the BEULRR system has the potential to be applied to clinical rehabilitation training in the further step. In the close future, the proposed BEULRR and bilateral symmetric training protocol are planned to be applied in elderly volunteers and patients with upper limb motor dysfunction for further evaluating.


ROBOT ◽  
2011 ◽  
Vol 33 (3) ◽  
pp. 307-313 ◽  
Author(s):  
Baoguo XU ◽  
Si PENG ◽  
Aiguo SONG

ROBOT ◽  
2012 ◽  
Vol 34 (5) ◽  
pp. 539 ◽  
Author(s):  
Lizheng PAN ◽  
Aiguo SONG ◽  
Guozheng XU ◽  
Huijun LI ◽  
Baoguo XU

Sign in / Sign up

Export Citation Format

Share Document