A second-order sliding mode controller for active suspension systems

Author(s):  
Shigehiro Toyama ◽  
Fujio Ikeda ◽  
Yoshio Sorimachi
Author(s):  
Jinwei Sun ◽  
JingYu Cong ◽  
Liang Gu ◽  
Mingming Dong

As the possibility of faults in active suspension actuators are higher and more severe compared to other components, this study presents a fault-tolerant control approach based on the second-order sliding mode control method. The aim of the controller is to improve riding comfort, guarantee handling stability, and provide adequate suspension stroke in the presence of disturbances and actuator faults. A nonlinear full-vehicle suspension system and hydraulic actuator with nonlinear characteristics are adopted for accurate control. Firstly, a nonlinear sliding manifold based on a nonsingular fast terminal sliding mode controller is introduced to suppress the sprung mass heave, pitch, and roll motions arising from road disturbances. Secondly, a second-order sliding mode-based super twisting controller is utilized to track the desired forces generated by the nonsingular fast terminal sliding mode controller with actuator faults and uncertainties. The controllers are robust against disturbances, uncertainties, and faults. Moreover, the stability of the super twisting controller is proved by the strong Lyapunov functions. Finally, numerical simulations are performed to demonstrate the effectiveness of the controller. Four different conditions, random road profile, bump road excitation, single-wheel bump excitation, and partial faults are considered. The main contributions of this study are: (1) combination of the above algorithms to deal with actuator faults and improve active suspension performance; (2) the controller proposed in this study has a simple structure. Simulation results indicate that the nonsingular fast terminal sliding mode super twisting controller can guarantee the performance of the closed-loop system under both faulty and healthy conditions.


Mechatronics ◽  
2009 ◽  
Vol 19 (7) ◽  
pp. 1178-1190 ◽  
Author(s):  
Jeen Lin ◽  
Ruey-Jing Lian ◽  
Chung-Neng Huang ◽  
Wun-Tong Sie

2020 ◽  
Vol 17 (4) ◽  
pp. 172988142094198
Author(s):  
Jinwei Sun ◽  
Kai Zhao

The object of this article is to design an observer-based adaptive neural network sliding mode controller for active suspension systems. A general nonlinear suspension model is established, and the electrohydraulic actuator dynamics are considered. The proposed controller is decomposed into two loops. Since the dynamics of the actuator is assumed highly nonlinear with uncertainties, the adaptive neural network is presented in the inner loop to ensure the control system robustness against uncertainties, and the self-tuning weighting vector is adjusted online according to the updated law obtained by Lyapunov stability theory. In the outer loop, a model reference sliding mode controller is developed to track the desired states of the hybrid reference model that combines skyhook and groundhook control methods. Besides, to obtain the unmeasured states of the system, an unscented Kalman filter is utilized to provide necessary information for the controller. Simulation results show that the exerted force can be tracked precisely even in the existence of uncertainties. Moreover, the proposed controller can improve the suspension’s performance effectively.


Sign in / Sign up

Export Citation Format

Share Document