On Performance Analysis of LSU-EKF Parameter Estimation Method for Polynomial Phase Signal

Author(s):  
Yong Wang ◽  
Huawei Xu ◽  
Cheng-Fu Yang
Author(s):  
Yi-xiong Zhang ◽  
Hua-wei Xu ◽  
Rong-rong Xu ◽  
Zhen-miao Deng ◽  
Cheng-Fu Yang

The parameter estimation problem for polynomial phase signals (PPSs) arises in a number of fields, including radar, sonar, biology, etc. In this paper, a fast algorithm of parameter estimation for monocomponent PPS is considered. We propose the so-called LSU-EKF estimator, which combines the least squares unwrapping (LSU) estimator and the extended Kalman filter (EKF). First, the coarse estimates of the parameters of PPS are obtained by the LSU estimator using a small number of samples. Subsequently, these coarse estimates are used to initial the EKF. Monte-Carlo simulations show that the computation complexity of the LSU-EKF estimator is much less than that of the LSU estimator, with little performance loss. Similar to the LSU estimator, the proposed algorithm is able to work over the entire identifiable region. Moreover, in the EKF stage, the accurate estimated results can be output point-by-point, which is useful in real applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jian-wei Yang ◽  
Man-feng Dou ◽  
Zhi-yong Dai

Taking advantage of the high reliability, multiphase permanent magnet synchronous motors (PMSMs), such as five-phase PMSM and six-phase PMSM, are widely used in fault-tolerant control applications. And one of the important fault-tolerant control problems is fault diagnosis. In most existing literatures, the fault diagnosis problem focuses on the three-phase PMSM. In this paper, compared to the most existing fault diagnosis approaches, a fault diagnosis method for Interturn short circuit (ITSC) fault of five-phase PMSM based on the trust region algorithm is presented. This paper has two contributions. (1) Analyzing the physical parameters of the motor, such as resistances and inductances, a novel mathematic model for ITSC fault of five-phase PMSM is established. (2) Introducing an object function related to the Interturn short circuit ratio, the fault parameters identification problem is reformulated as the extreme seeking problem. A trust region algorithm based parameter estimation method is proposed for tracking the actual Interturn short circuit ratio. The simulation and experimental results have validated the effectiveness of the proposed parameter estimation method.


Sign in / Sign up

Export Citation Format

Share Document