Deep Packet Field Extraction Engine (DPFEE): A pre-processor for network intrusion detection and denial-of-service detection systems

Author(s):  
Vinayaka Jyothi ◽  
Sateesh K. Addepalli ◽  
Ramesh Karri
Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 916 ◽  
Author(s):  
Jiyeon Kim ◽  
Jiwon Kim ◽  
Hyunjung Kim ◽  
Minsun Shim ◽  
Eunjung Choi

As cyberattacks become more intelligent, it is challenging to detect advanced attacks in a variety of fields including industry, national defense, and healthcare. Traditional intrusion detection systems are no longer enough to detect these advanced attacks with unexpected patterns. Attackers bypass known signatures and pretend to be normal users. Deep learning is an alternative to solving these issues. Deep Learning (DL)-based intrusion detection does not require a lot of attack signatures or the list of normal behaviors to generate detection rules. DL defines intrusion features by itself through training empirical data. We develop a DL-based intrusion model especially focusing on denial of service (DoS) attacks. For the intrusion dataset, we use KDD CUP 1999 dataset (KDD), the most widely used dataset for the evaluation of intrusion detection systems (IDS). KDD consists of four types of attack categories, such as DoS, user to root (U2R), remote to local (R2L), and probing. Numerous KDD studies have been employing machine learning and classifying the dataset into the four categories or into two categories such as attack and benign. Rather than focusing on the broad categories, we focus on various attacks belonging to same category. Unlike other categories of KDD, the DoS category has enough samples for training each attack. In addition to KDD, we use CSE-CIC-IDS2018 which is the most up-to-date IDS dataset. CSE-CIC-IDS2018 consists of more advanced DoS attacks than that of KDD. In this work, we focus on the DoS category of both datasets and develop a DL model for DoS detection. We develop our model based on a Convolutional Neural Network (CNN) and evaluate its performance through comparison with an Recurrent Neural Network (RNN). Furthermore, we suggest the optimal CNN design for the better performance through numerous experiments.


2021 ◽  
Vol 11 (17) ◽  
pp. 7868
Author(s):  
Andrey Ferriyan ◽  
Achmad Husni Thamrin ◽  
Keiji Takeda ◽  
Jun Murai

The lack of publicly available up-to-date datasets contributes to the difficulty in evaluating intrusion detection systems. This paper introduces HIKARI-2021, a dataset that contains encrypted synthetic attacks and benign traffic. This dataset conforms to two requirements: the content requirements, which focus on the produced dataset, and the process requirements, which focus on how the dataset is built. We compile these requirements to enable future dataset developments and we make the HIKARI-2021 dataset, along with the procedures to build it, available for the public.


Sign in / Sign up

Export Citation Format

Share Document