2020 ◽  
Vol 15 (3) ◽  
pp. 97-103
Author(s):  
Megha Nath Dhakal ◽  
Rudra Ghimire

Electricity is a necessary requirement for accelerating the economic development of any country and is considered an important input to improve quality of life. Electricity supply to consumer end is possible by the combine function of power generation, transmission and distribution instantly. One of the most chronic areas of power loss in power system is power distribution feeder. Loss in feeders are identified mainly due to overloaded conductors and transformers, long distance feeder, unbalance load on transformer, low power factor load, uses of energy inefficient load, hooking etc. The distribution losses which are more predominant can be categorized as technical losses and non-technical losses. The main target of the study is to improve the technical and overall efficiency of a distribution feeder. A high loss feeder is selected for efficiency study. Direct method of loss calculation is used to calculate total losses of the feeder and indirect method is used to find the technical losses on the feeder in existing condition. Technical losses of existing feeder and improvement on same distribution system through technical loss reduction options is analyzed by implementing the conductor replacement, rerouting and optimum capacitor placement (OCP) methods using electrical transient analyzer program (ETAP) simulation. Technical efficiency and overall efficiency for the different non-technical loss values are calculated and analyzed. Implementation of results will improve financial health of the power distribution company and provide reliable electricity supply to the consumers. In addition, it provides further inputs to energy planners and managers for a number of remedial measures to loss reduction and improvement of overall efficiency of the power distribution system.


Author(s):  
M. Jawad Ghorbani ◽  
Hossein Mokhtari

This paper investigates the harmonic distortion and losses in power distribution systems due to the dramatic increase of nonlinear loads. This paper tries to determine the amount of the harmonics generated by nonlinear loads in residential, commercial and office loads in distribution feeders and estimates the energy losses due to these harmonics. Norton equivalent modeling technique has been used to model the nonlinear loads. The presented harmonic Norton equivalent models of the end user appliances are accurately obtained based on the experimental data taken from the laboratory measurements. A 20 kV/400V distribution feeder is simulated to analyze the impact of nonlinear loads on feeder harmonic distortion level and losses. The model follows a “bottom-up” approach, starting from end users appliances Norton equivalent model and then modeling residential, commercial and office loads. Two new indices are introduced by the authors to quantize the effect of each nonlinear appliance on the power quality of a distribution feeder and loads are ranked based on these new defined indices. The simulation results show that harmonic distortion in distribution systems can increase power losses up to 20%.


2009 ◽  
Author(s):  
F. Zavoda ◽  
M. Bollen ◽  
M. Tremblay

2016 ◽  
Vol 31 (9) ◽  
pp. 6203-6216 ◽  
Author(s):  
Xiaofeng Sun ◽  
Ruijing Han ◽  
Hong Shen ◽  
Baocheng Wang ◽  
Zhigang Lu ◽  
...  

Author(s):  
Khairul Anwar Ibrahim ◽  
Mau Teng Au ◽  
Chin Kim Gan

<span lang="EN-US">Power distribution feeders is one of the key contributors of technical losses (TL) as it is typically large in numbers and scattered over large geographic areas. Traditional approach using classical formulation or time series load flow simulations to determine TL in each and every feeder and feeder sections in all distribution network require is an expensive exercise as it requires extensive modelling of the feeders and voluminous data. This paper presents a simple analytical approach to estimate monthly TL of a radial distribution feeder using analytical approach. TL for each feeder sections are evaluated on a monthly basis based on estimation of the load profile of the load points, peak power loss characteristics and loss factor. Total feeder TL are then estimated as the sum of all TL contributed by each feeder section. The developed models and procedure have been demonstrated through case studies performed on three (3) typical and representative feeders characterized by the different area served, number of feeder sections, load distribution and feeder length. The results shows close agreement (less than 5% differences) when compared with time series load flow simulations. With this model, the approach could be extended and applied to estimate TL of any radial distribution feeders of different configurations and characteristics</span>


Sign in / Sign up

Export Citation Format

Share Document