Multi-value sequence generated by trace function and power residue symbol over proper sub extension field

Author(s):  
Ali Md. Arshad ◽  
Takeru Miyazaki ◽  
Yasuyuki Nogami ◽  
Satoshi Uehara ◽  
Robert Morelos-Zaragoza
Author(s):  
Yasuyuki NOGAMI ◽  
Satoshi UEHARA ◽  
Kazuyoshi TSUCHIYA ◽  
Nasima BEGUM ◽  
Hiroto INO ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michał Ławniczak ◽  
Adam Sawicki ◽  
Małgorzata Białous ◽  
Leszek Sirko

AbstractWe identify and investigate isoscattering strings of concatenating quantum graphs possessing n units and 2n infinite external leads. We give an insight into the principles of designing large graphs and networks for which the isoscattering properties are preserved for $$n \rightarrow \infty $$ n → ∞ . The theoretical predictions are confirmed experimentally using $$n=2$$ n = 2 units, four-leads microwave networks. In an experimental and mathematical approach our work goes beyond prior results by demonstrating that using a trace function one can address the unsettled until now problem of whether scattering properties of open complex graphs and networks with many external leads are uniquely connected to their shapes. The application of the trace function reduces the number of required entries to the $$2n \times 2n $$ 2 n × 2 n scattering matrices $${\hat{S}}$$ S ^ of the systems to 2n diagonal elements, while the old measures of isoscattering require all $$(2n)^2$$ ( 2 n ) 2 entries. The studied problem generalizes a famous question of Mark Kac “Can one hear the shape of a drum?”, originally posed in the case of isospectral dissipationless systems, to the case of infinite strings of open graphs and networks.


Author(s):  
Olive Chakraborty ◽  
Jean-Charles Faugère ◽  
Ludovic Perret
Keyword(s):  

1982 ◽  
Vol 47 (4) ◽  
pp. 734-738
Author(s):  
Bruce I. Rose

In this note we show that taking a scalar extension of two elementarily equivalent finite-dimensional algebras over the same field preserves elementary equivalence. The general question of whether or not tensor product preserves elementary equivalence was originally raised in [4]. In [3] Feferman relates an example of Ersov which answers the question negatively. Eklof and Olin [7] also provide a counterexample to the general question in the context of two-sorted structures. Thus the result proved below is a partial positive answer to a general question whose status has been resolved negatively. From the viewpoint of applied model theory it seems desirable to find contexts in which positive statements of preservation can be obtained. Our result does have an application; a corollary to it increases our understanding of what it means for two division algebras to be elementarily equivalent.All algebras are finite-dimensional algebras over fields. All algebras contain an identity element, but are not necessarily associative.Recall that the center of a not necessarily associative algebra A is the set of elements which commute and “associate” with all elements of A. The notion of a scalar extension is an important one in algebra. If A is an algebra over F and G is an extension field of F, then the scalar extension of A by G is the algebra A ⊗F G.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 38234-38242 ◽  
Author(s):  
Chiou-Yng Lee ◽  
Chia-Chen Fan ◽  
Jiafeng Xie ◽  
Shyan-Ming Yuan

Sign in / Sign up

Export Citation Format

Share Document