Enhancement of H.264/AVC for higher coding efficiency using motion estimation between reference frames

Author(s):  
T. Murakami ◽  
S. Saito ◽  
Y. Komatsu ◽  
K. Nakamura ◽  
T. Yokoyama
2010 ◽  
Vol 56 (2) ◽  
pp. 925-929
Author(s):  
Tomokazu Murakami ◽  
Shohei Saito ◽  
Yuto Komatsu ◽  
Katsuyuki Nakamura ◽  
Toru Yokoyama

2010 ◽  
Vol 19 (08) ◽  
pp. 1665-1687 ◽  
Author(s):  
MOHAMMAD REZA HOSSEINY FATEMI ◽  
HASAN F. ATES ◽  
ROSLI SALLEH

The sub-pixel motion estimation (SME), together with the interpolation of reference frames, is a computationally extensive part of the H.264 encoder that increases the memory requirement 16-times for each reference frame. Due to the huge computational complexity and memory requirement of the H.264 SME, its hardware architecture design is an important issue especially in high resolution or low power applications. To solve the above difficulties, we propose several optimization techniques in both algorithm and architecture levels. In the algorithm level, we propose a parabolic based algorithm for SME with quarter-pixel accuracy which reduces the computational budget by 94.35% and the memory access requirement by 98.5% in comparison to the standard interpolate and search method. In addition, a fast version of the proposed algorithm is presented that reduces the computational budget 46.28% further while maintaining the video quality. In the architecture level, we propose a novel bit-serial architecture for our algorithm. Due to advantages of the bit-serial architecture, it has a low gate count, high speed operation frequency, low density interconnection, and a reduced number of I/O pins. Also, several optimization techniques including the sum of absolute differences truncation, source sharing exploiting and power saving techniques are applied to the proposed architecture which reduce power consumption and area. Our design can save between 57.71–90.01% of area cost and improves the macroblock (MB) processing speed between 1.7–8.44 times when compared to previous designs. Implementation results show that our design can support real time HD1080 format with 20.3 k gate counts at the operation frequency of 144.9 MHz.


Author(s):  
LI WERN CHEW ◽  
WAI CHONG CHIA ◽  
LI-MINN ANG ◽  
KAH PHOOI SENG

This paper introduces a smoothing and preprocessing (S+P) technique for a line-based one-bit-transform (1BT) motion estimation scheme. In the proposed algorithm, a smoothing threshold ( Threshold S) is incorporated into the 1BT convolutional kernel. By using the smoothing threshold, scattering noise which is a common problem in most 1BT images can be greatly reduced. After the transformation, the 1BT images for the current and reference frames are divided into a number of macroblocks. The macroblock in the current frame is first compared with the macroblock at the same position in the reference frame. If the Sum of Absolute Difference (SAD) is below a certain preprocessing threshold ( Threshold P), the macroblock in the current frame is considered to have negligible movement and motion search is not performed. Simulation results show that this technique achieves high performance and greatly reduces the number of search operations. By incorporating the S+P technique, the PSNR achieved by the 1BT is approaches the performance of the 8-bit Full Search Block Matching Algorithm (FSBMA), and the difference is as low as 0.08 dB. In addition, this technique outperforms current state-of-the-art 1BT motion estimation techniques. An improvement in PSNR performance by up to 0.6 dB and a reduction in the number of search operations by 60% to 93% is achieved using video conferencing sequences.


2021 ◽  
Author(s):  
Theepan Moorthy

The H.264 video compression standard uses enhanced Motion Estimation (ME) features to improve both the compression ratio and the quality of compressed video. The two primary enhancements are the use of Variable Block Size Motion Estimation (VBSME) and multiple reference frames. These two additions greatly increase the computational complexity of the ME algorithm, to the point where a software based real-time (30 frames per second (fps)) implementation is not possible on present microprocessors. Thus hardware acceleration of the H.264 ME algorithm is necessary in order to achieve real-time performance for the implementation of the VBSME and multiple reference frames features. This thesis presents a scalable FPGA-based ME architecture that supports real-time H.264 ME for a wide range of video resolutions ─ from 640x480 VGA to 1920x1088 High Definition (HD). The architecture contains innovations in both the data-path design and memory organization to achieve scalability and real-time performance on FPGAs. At 37% FPGA device utilization, the architecture is able to achieve 31 fps performance for encoding full 1920x1088 progressive HDTV video.


Sign in / Sign up

Export Citation Format

Share Document