HIGH PERFORMANCE, LOW-COMPLEXITY LINE-BASED MOTION ESTIMATION ALGORITHM WITH SMOOTHING AND PREPROCESSING

Author(s):  
LI WERN CHEW ◽  
WAI CHONG CHIA ◽  
LI-MINN ANG ◽  
KAH PHOOI SENG

This paper introduces a smoothing and preprocessing (S+P) technique for a line-based one-bit-transform (1BT) motion estimation scheme. In the proposed algorithm, a smoothing threshold ( Threshold S) is incorporated into the 1BT convolutional kernel. By using the smoothing threshold, scattering noise which is a common problem in most 1BT images can be greatly reduced. After the transformation, the 1BT images for the current and reference frames are divided into a number of macroblocks. The macroblock in the current frame is first compared with the macroblock at the same position in the reference frame. If the Sum of Absolute Difference (SAD) is below a certain preprocessing threshold ( Threshold P), the macroblock in the current frame is considered to have negligible movement and motion search is not performed. Simulation results show that this technique achieves high performance and greatly reduces the number of search operations. By incorporating the S+P technique, the PSNR achieved by the 1BT is approaches the performance of the 8-bit Full Search Block Matching Algorithm (FSBMA), and the difference is as low as 0.08 dB. In addition, this technique outperforms current state-of-the-art 1BT motion estimation techniques. An improvement in PSNR performance by up to 0.6 dB and a reduction in the number of search operations by 60% to 93% is achieved using video conferencing sequences.

2013 ◽  
Vol 380-384 ◽  
pp. 1477-1481
Author(s):  
Zhi Peng Jin ◽  
Yu Yan Fang ◽  
Mei Yu

in order to improve the efficiency of ray-space data compression, according to the texture characteristics of ray space data, introducing a simple effective method of texture classification, a new fast block matching algorithm based on adaptive template selection is proposed in this paper, for prediction coding of ray space slice sequence. Experimental results show that the proposed algorithm has low-complexity and high-performance characteristics, for different types of ray space slice sequences with strong adaptability.


2016 ◽  
Vol 25 (08) ◽  
pp. 1650083
Author(s):  
P. Muralidhar ◽  
C. B. Rama Rao

Motion estimation (ME) is a highly computationally intensive operation in video compression. Efficient ME architectures are proposed in the literature. This paper presents an efficient low computational complexity systolic architecture for full search block matching ME (FSBME) algorithm. The proposed architecture is based on one-bit transform-based full search (FS) algorithm. The proposed ME hardware architectures perform FS ME for four macroblocks (MBs) in parallel. The proposed hardware architecture is implemented in VHDL. The FSBME hardware consumes 34% of the slices in a Xilinx Vertex XC6vlx240T FPGA device with a maximum frequency of 133[Formula: see text]MHz and is capable of processing full high definition (HD) ([Formula: see text]) frames at a rate of 60 frames per second.


Sign in / Sign up

Export Citation Format

Share Document