scholarly journals Intercarrier interference cancellation for wideband OFDM in high speed aerial vehicle communication

Author(s):  
Qian Han ◽  
Xue Li ◽  
M. Temple ◽  
Zhiqiang Wu
2020 ◽  
Vol 12 ◽  
pp. 175682932092452
Author(s):  
Liang Lu ◽  
Alexander Yunda ◽  
Adrian Carrio ◽  
Pascual Campoy

This paper presents a novel collision-free navigation system for the unmanned aerial vehicle based on point clouds that outperform compared to baseline methods, enabling high-speed flights in cluttered environments, such as forests or many indoor industrial plants. The algorithm takes the point cloud information from physical sensors (e.g. lidar, depth camera) and then converts it to an occupied map using Voxblox, which is then used by a rapid-exploring random tree to generate finite path candidates. A modified Covariant Hamiltonian Optimization for Motion Planning objective function is used to select the best candidate and update it. Finally, the best candidate trajectory is generated and sent to a Model Predictive Control controller. The proposed navigation strategy is evaluated in four different simulation environments; the results show that the proposed method has a better success rate and a shorter goal-reaching distance than the baseline method.


Sign in / Sign up

Export Citation Format

Share Document