scholarly journals Effect of Electric Vehicles Charging Loads on Realistic Residential Distribution System in Aqaba-Jordan

2021 ◽  
Vol 12 (4) ◽  
pp. 218
Author(s):  
Mohammad A. Obeidat ◽  
Abdulaziz Almutairi ◽  
Saeed Alyami ◽  
Ruia Dahoud ◽  
Ayman M. Mansour ◽  
...  

In recent years, air pollution and climate change issues have pushed people worldwide to switch to using electric vehicles (EVs) instead of gas-driven vehicles. Unfortunately, most distribution system facilities are neither designed nor well prepared to accommodate these new types of loads, which are characterized by random and uncertain behavior. Therefore, this paper provides a comprehensive investigation of EVs’ effect on a realistic distribution system. It provides a technical evaluation and analysis of a real distribution system’s load and voltage drop in the presence of EVs under different charging strategies. In addition, this investigation presents a new methodology for managing EV loads under a dynamic response strategy in response to the distribution system’s critical hours. The proposed methodology is applied to a real distribution network, using the Monte Carlo method and the CYME program. Random driver behavior is taken into account in addition to various factors that affect EV load parameters. Overall, the results show that the distribution system is significantly affected by the addition of EV charging loads, which create a severe risk to feeder limits and voltage drop. However, a significant reduction in the impact of EVs can be achieved if a proper dynamic demand response programme is implemented. We hope that the outcomes of this investigation will provide decision-makers and planners with prior knowledge about the expected impact of using EVs and, consequently, enable them to take the proper actions needed to manage such load.

Author(s):  
Jayababu Badugu ◽  
Y.P. Obulesu ◽  
Ch. Sai Babu

Electric Vehicles (EVs) are becoming a viable transportation option because they are environmentally friendly and provide solutions to high oil prices. This paper investigates the impacts of electric vehicles on harmonic distortions in urban radial residential distribution systems. The accomplishment of EV innovation relies on the accessibility of EV charging stations. To meet the power demand of growing EVs, utilities are introducing EV charging stations in private and public areas; this led to a change in the residential distribution system infrastructure. In this paper, an urban radial residential distribution system with the integration of an electric vehicle charging facility is considered for investigation. An impact of different EV penetration levels on voltage distortion is analysed. Different penetration levels of EVs into the residential distribution system are considered. Simulation results are presented to validate the work carried out in this paper. An attempt has been made to establish the relationship between the level of penetration of the EVs and voltage distortion in terms of THD (Total Harmonic Distortion)


2021 ◽  
Vol 13 (6) ◽  
pp. 3199
Author(s):  
Laith Shalalfeh ◽  
Ashraf AlShalalfeh ◽  
Khaled Alkaradsheh ◽  
Mahmoud Alhamarneh ◽  
Ahmad Bashaireh

An increasing number of electric vehicles (EVs) are replacing gasoline vehicles in the automobile market due to the economic and environmental benefits. The high penetration of EVs is one of the main challenges in the future smart grid. As a result of EV charging, an excessive overloading is expected in different elements of the power system, especially at the distribution level. In this paper, we evaluate the impact of EVs on the distribution system under three loading conditions (light, intermediate, and full). For each case, we estimate the maximum number of EVs that can be charged simultaneously before reaching different system limitations, including the undervoltage, overcurrent, and transformer capacity limit. Finally, we use the 19-node distribution system to study these limitations under different loading conditions. The 19-node system is one of the typical distribution systems in Jordan. Our work estimates the upper limit of the possible EV penetration before reaching the system stability margins.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 686 ◽  
Author(s):  
Bruno Canizes ◽  
João Soares ◽  
Zita Vale ◽  
Juan Corchado

The use of electric vehicles (EVs) is growing in popularity each year, and as a result, considerable demand increase is expected in the distribution network (DN). Additionally, the uncertainty of EV user behavior is high, making it urgent to understand its impact on the network. Thus, this paper proposes an EV user behavior simulator, which operates in conjunction with an innovative smart distribution locational marginal pricing based on operation/reconfiguration, for the purpose of understanding the impact of the dynamic energy pricing on both sides: the grid and the user. The main goal, besides the distribution system operator (DSO) expenditure minimization, is to understand how and to what extent dynamic pricing of energy for EV charging can positively affect the operation of the smart grid and the EV charging cost. A smart city with a 13-bus DN and a high penetration of distributed energy resources is used to demonstrate the application of the proposed models. The results demonstrate that dynamic energy pricing for EV charging is an efficient approach that increases monetary savings considerably for both the DSO and EV users.


2015 ◽  
Vol 1092-1093 ◽  
pp. 375-380
Author(s):  
Suthida Ruayariyasub ◽  
Sompon Sirisumrannukul ◽  
Suksan Wangsatitwong

This paper investigates the impact of electric vehicles battery charging on the distribution system load if electric vehicles (EVs) are widespread used on roads. Stochastic approach based on a Monte Carlo method is developed in this study to simulate EVs charging load in two cases: 1) normal charge service at home, and 2) quick charge service at public charging stations. To demonstrate the model, a 22-kV distribution system of Pattaya City operated by Provincial Electricity Authority of Thailand (PEA) is employed in the case study. The results indicate the capability of the proposed model to exhibit the impact of EVs charging load on the local distribution system.


2020 ◽  
Vol 10 (18) ◽  
pp. 6500
Author(s):  
Dian Wang ◽  
Manuela Sechilariu ◽  
Fabrice Locment

The increase in the number of electric vehicles (EVs) has led to an increase in power demand from the public grid; hence, a photovoltaic based charging station for an electric vehicle (EV) can participate to solve some peak power problems. On the other hand, vehicle-to-grid technology is designed and applied to provide ancillary services to the grid during the peak periods, considering the duality of EV battery “load-source”. In this paper, a dynamic searching peak and valley algorithm, based on energy management, is proposed for an EV charging station to mitigate the impact on the public grid, while reducing the energy cost of the public grid. The proposed searching peak and valley algorithm can determine the optimal charging/discharging start time of EV in consideration of the initial state of charge, charging modes, arrival time, departure time, and the peak periods. Simulation results demonstrate the proposed searching peak and valley algorithm’s effectiveness, which can guarantee the balance of the public grid, whilst meanwhile satisfying the charging demand of EV users, and most importantly, reduce the public grid energy cost.


2014 ◽  
Vol 953-954 ◽  
pp. 1367-1371
Author(s):  
Dong Hua Wang ◽  
Cheng Xiong Mao ◽  
Min Wei Wang ◽  
Ji Ming Lu ◽  
Hua Fan ◽  
...  

The plug-in electric vehicles (PEVs) would exert inevitable impact on distribution system operation due to the spatial and temporal stochastic nature of the charging load. Based on the probability distributions of battery charging start time and the initial state-of-charge (SOC), the spatial and temporal charging loads of PEVs are analyzed on load nature and charging behaviors among different functional distribution areas. Taking IEEE 33-bus distribution system as an example, the Monte Carlo method is adopted to simulate charging load under different charging strategies and charging places for assess the impact on network loss and nodal voltage using standard load flow calculations. The results show that the choice of control strategies can improve the impacts of PEVs charging on distribution grid; a well-developed public charging infrastructure could reduce the stress on the residential distribution systems; optimal assignment of PEVs charging in residential area and industrial or commercial areas would provide a reference for charging infrastructure construction.


2013 ◽  
Vol 732-733 ◽  
pp. 852-856
Author(s):  
Ying Da Zhang ◽  
Nian Liu ◽  
Jian Hua Zhang

Battery swap stations for electric vehicles are getting more and more attention, but there is still no comprehensive protection scheme in distribution system when battery swap stations discharging to the grid. The present paper presents the structural topology and the corresponding detail control model of charge and discharge machines in the battery swap station. Then with an example of a 10kV distribution system composed by a battery swap station, the fault features of the battery swap stations outlet and the grid are simulated when the battery swap station works in different state and various short circuit faults occur in the grid through PSCAD/EMTDC. Based on the above, the impact of the battery swap stations operating status on the grids fault features is analyzed in detail. In the end, the outcomes of the paper can provide evidence for improving such distribution grids protection.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6589
Author(s):  
Claude Ziad El-Bayeh ◽  
Mohamed Zellagui ◽  
Brahim Brahmi ◽  
Walid Alqaisi ◽  
Ursula Eicker

High penetration levels of Plug-in Electric Vehicles (PEVs) could cause stress on the network and might violate the limits and constraints under extreme conditions, such as exceeding power and voltage limits on transformers and power lines. This paper defines extreme conditions as the state of a load or network that breaks the limits of the constraints in an optimization model. Once these constraints are violated, the optimization algorithm might not work correctly and might not converge to a feasible solution, especially when the complexity of the system increases and includes nonlinearities. Hence, the algorithm may not help in mitigating the impact of penetrating PEVs under extreme conditions. To solve this problem, an original algorithm is suggested that is able to adapt the constraints’ limits according to the energy demand and the energy needed to charge the PEVs. Different case scenarios are studied for validation purposes, such as charging PEVs under different state of charge levels, different energy demands at home, and different pricing mechanisms. Results show that our original algorithm improved the profiles of the voltage and power under extreme conditions. Hence, the algorithm is able to improve the integration of a high number of PEVs on the distribution system under extreme conditions while preserving its stability.


Sign in / Sign up

Export Citation Format

Share Document