scholarly journals Investigation of THD Analysis in Residential Distribution Systems with Different Penetration Levels of Electric Vehicles

Author(s):  
Jayababu Badugu ◽  
Y.P. Obulesu ◽  
Ch. Sai Babu

Electric Vehicles (EVs) are becoming a viable transportation option because they are environmentally friendly and provide solutions to high oil prices. This paper investigates the impacts of electric vehicles on harmonic distortions in urban radial residential distribution systems. The accomplishment of EV innovation relies on the accessibility of EV charging stations. To meet the power demand of growing EVs, utilities are introducing EV charging stations in private and public areas; this led to a change in the residential distribution system infrastructure. In this paper, an urban radial residential distribution system with the integration of an electric vehicle charging facility is considered for investigation. An impact of different EV penetration levels on voltage distortion is analysed. Different penetration levels of EVs into the residential distribution system are considered. Simulation results are presented to validate the work carried out in this paper. An attempt has been made to establish the relationship between the level of penetration of the EVs and voltage distortion in terms of THD (Total Harmonic Distortion)

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1650 ◽  
Author(s):  
Bong-Gi Choi ◽  
Byeong-Chan Oh ◽  
Sungyun Choi ◽  
Sung-Yul Kim

Establishing electric vehicle supply equipment (EVSE) to keep up with the increasing number of electric vehicles (EVs) is the most realistic and direct means of promoting their spread. Using traffic data collected in one area; we estimated the EV charging demand and selected priority fast chargers; ranging from high to low charging demand. A queueing model was used to calculate the number of fast chargers required in the study area. Comparison of the existing distribution of fast chargers with that suggested by the traffic load eliminating method demonstrated the validity of our traffic-based location approach.


2021 ◽  
Vol 12 (4) ◽  
pp. 218
Author(s):  
Mohammad A. Obeidat ◽  
Abdulaziz Almutairi ◽  
Saeed Alyami ◽  
Ruia Dahoud ◽  
Ayman M. Mansour ◽  
...  

In recent years, air pollution and climate change issues have pushed people worldwide to switch to using electric vehicles (EVs) instead of gas-driven vehicles. Unfortunately, most distribution system facilities are neither designed nor well prepared to accommodate these new types of loads, which are characterized by random and uncertain behavior. Therefore, this paper provides a comprehensive investigation of EVs’ effect on a realistic distribution system. It provides a technical evaluation and analysis of a real distribution system’s load and voltage drop in the presence of EVs under different charging strategies. In addition, this investigation presents a new methodology for managing EV loads under a dynamic response strategy in response to the distribution system’s critical hours. The proposed methodology is applied to a real distribution network, using the Monte Carlo method and the CYME program. Random driver behavior is taken into account in addition to various factors that affect EV load parameters. Overall, the results show that the distribution system is significantly affected by the addition of EV charging loads, which create a severe risk to feeder limits and voltage drop. However, a significant reduction in the impact of EVs can be achieved if a proper dynamic demand response programme is implemented. We hope that the outcomes of this investigation will provide decision-makers and planners with prior knowledge about the expected impact of using EVs and, consequently, enable them to take the proper actions needed to manage such load.


Electric Vehicles (EV) are the world’s future transport systems. With the rise in pollutions and its effects on the environment, there has been a large scale movetowards electrical vehicles. But the plug point availability for charging is the serious problem faced by the mostof Electric Vehicle consumers. Therefore, there is a definite need to move from the GRID based/connected charging stations to standalone off-grid stations for charging the Electric Vehicles. The objective of this paper is to arrive at the best configuration or mix of the renewable resources and energy storage systems along with conventional Diesel Generator set which together works in offgrid for Electric Vehicle charging. As aconclusion, by utilizing self-sustainable off-grid power generation technology, the availability of EV charging stations in remote localities at affordable price can be made and mainly it reduces burden on the existing electrical infrastructure.


2021 ◽  
Vol 236 ◽  
pp. 02019
Author(s):  
Dazhong Zou ◽  
Gang Zhang ◽  
Shuai Lu ◽  
Yinping Dai

To solve the problem that charging is constrained by the capacity of distribution facilities under high penetration of electric vehicles (EVs), this paper proposes to improve EV charging capacity through battery energy storage (BES) and presents the design of a locally organized market, namely micro-market, that manages the energy transactions between EVs and the BES. When the load of a distribution system approaches its limit, additional EV charging demand is met by the BES, and the price is determined in an automated two-way bidding process. This mechanism can increase EV charging capacity as well as provide an additional revenue stream for the BES in distribution systems. The presented micro-market design ensures the balance between revenue and expenditure of market participants. The organization and settlement process of the micro-market are demonstrated using an example case, and the effectiveness of the design is proved.


Author(s):  
Rutuja Rajole ◽  
Rutuja Kakulte ◽  
Ashwin Pathak

Electric vehicles are a new and upcoming technology in the transportation and power sector that have many benefits in terms of economic and environmental. This study presents a comprehensive review and evaluation of various types of electric vehicles and its associated equipment in particular battery charger and charging station. A comparison is made on the commercial and prototype electric vehicles in terms of electric range, battery size, charger power and charging time. The various types of charging stations and standards used for charging electric vehicles have been outlined and the impact of electric vehicle charging on utility distribution systems is also discussed. The methodology presented here was time-and cost-effective, as well as scalable to other organizations that own charging stations. Electric vehicles (EVs) are becoming increasingly popular in many countries of the world. EVs are proving more energy efficient and environmental friendly. But the lack of charging stations restricts the wide adoption of EVs in the world. As EV usage grows, more public spaces are installing EV charging stations.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1500 ◽  
Author(s):  
Hadi Suyono ◽  
Mir Toufikur Rahman ◽  
Hazlie Mokhlis ◽  
Mohamadariff Othman ◽  
Hazlee Azil Illias ◽  
...  

Technological advancement, environmental concerns, and social factors have made plug-in electric vehicles (PEVs) popular and attractive vehicles. Such a trend has caused major impacts to electrical distribution systems in terms of efficiency, stability, and reliability. Moreover, excessive power loss, severe voltage deviation, transformer overload, and system blackouts will happen if PEV charging activities are not coordinated well. This paper presents an optimal charging coordination method for a random arrival of PEVs in a residential distribution network with minimum power loss and voltage deviation. The method also incorporates capacitor switching and on-load tap changer adjustment for further improvement of the voltage profile. The meta-heuristic methods, binary particle swarm optimization (BPSO) and binary grey wolf optimization (BGWO), are employed in this paper. The proposed method considers a time-of-use (ToU) electricity tariff such that PEV users will get more benefits. The random PEV arrival is considered based on the driving pattern of four different regions. To demonstrate the effectiveness of the proposed method, comprehensive analysis is conducted using a modified of IEEE 31 bus system with three different PEV penetrations. The results indicate a promising outcome in terms of cost and the distribution system stress minimization.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1215
Author(s):  
Alvaro Carreno ◽  
Marcelo Perez ◽  
Carlos Baier ◽  
Alex Huang ◽  
Sanjay Rajendran ◽  
...  

Distribution systems are under constant stress due to their highly variable operating conditions, which jeopardize distribution transformers and lines, degrading the end-user service. Due to transformer regulation, variable loads can generate voltage profiles out of the acceptable bands recommended by grid codes, affecting the quality of service. At the same time, nonlinear loads, such as diode bridge rectifiers without power factor correction systems, generate nonlinear currents that affect the distribution transformer operation, reducing its lifetime. Variable loads can be commonly found at domiciliary levels due to the random operation of home appliances, but recently also due to electric vehicle charging stations, where the distribution transformer can cyclically vary between no-load, rated and overrated load. Thus, the distribution transformer can not safely operate under highly-dynamic and stressful conditions, requiring the support of alternative systems. Among the existing solutions, hybrid transformers, which are composed of a conventional transformer and a power converter, are an interesting alternative to cope with several power quality problems. This article is a review of the available literature about hybrid distribution transformers.


2021 ◽  
Vol 13 (6) ◽  
pp. 3199
Author(s):  
Laith Shalalfeh ◽  
Ashraf AlShalalfeh ◽  
Khaled Alkaradsheh ◽  
Mahmoud Alhamarneh ◽  
Ahmad Bashaireh

An increasing number of electric vehicles (EVs) are replacing gasoline vehicles in the automobile market due to the economic and environmental benefits. The high penetration of EVs is one of the main challenges in the future smart grid. As a result of EV charging, an excessive overloading is expected in different elements of the power system, especially at the distribution level. In this paper, we evaluate the impact of EVs on the distribution system under three loading conditions (light, intermediate, and full). For each case, we estimate the maximum number of EVs that can be charged simultaneously before reaching different system limitations, including the undervoltage, overcurrent, and transformer capacity limit. Finally, we use the 19-node distribution system to study these limitations under different loading conditions. The 19-node system is one of the typical distribution systems in Jordan. Our work estimates the upper limit of the possible EV penetration before reaching the system stability margins.


2021 ◽  
Vol 13 (11) ◽  
pp. 6163
Author(s):  
Yongyi Huang ◽  
Atsushi Yona ◽  
Hiroshi Takahashi ◽  
Ashraf Mohamed Hemeida ◽  
Paras Mandal ◽  
...  

Electric vehicle charging station have become an urgent need in many communities around the world, due to the increase of using electric vehicles over conventional vehicles. In addition, establishment of charging stations, and the grid impact of household photovoltaic power generation would reduce the feed-in tariff. These two factors are considered to propose setting up charging stations at convenience stores, which would enable the electric energy to be shared between locations. Charging stations could collect excess photovoltaic energy from homes and market it to electric vehicles. This article examines vehicle travel time, basic household energy demand, and the electricity consumption status of Okinawa city as a whole to model the operation of an electric vehicle charging station for a year. The entire program is optimized using MATLAB mixed integer linear programming (MILP) toolbox. The findings demonstrate that a profit could be achieved under the principle of ensuring the charging station’s stable service. Household photovoltaic power generation and electric vehicles are highly dependent on energy sharing between regions. The convenience store charging station service strategy suggested gives a solution to the future issues.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-21
Author(s):  
Hossam ElHussini ◽  
Chadi Assi ◽  
Bassam Moussa ◽  
Ribal Atallah ◽  
Ali Ghrayeb

With the growing market of Electric Vehicles (EV), the procurement of their charging infrastructure plays a crucial role in their adoption. Within the revolution of Internet of Things, the EV charging infrastructure is getting on board with the introduction of smart Electric Vehicle Charging Stations (EVCS), a myriad set of communication protocols, and different entities. We provide in this article an overview of this infrastructure detailing the participating entities and the communication protocols. Further, we contextualize the current deployment of EVCSs through the use of available public data. In the light of such a survey, we identify two key concerns, the lack of standardization and multiple points of failures, which renders the current deployment of EV charging infrastructure vulnerable to an array of different attacks. Moreover, we propose a novel attack scenario that exploits the unique characteristics of the EVCSs and their protocol (such as high power wattage and support for reverse power flow) to cause disturbances to the power grid. We investigate three different attack variations; sudden surge in power demand, sudden surge in power supply, and a switching attack. To support our claims, we showcase using a real-world example how an adversary can compromise an EVCS and create a traffic bottleneck by tampering with the charging schedules of EVs. Further, we perform a simulation-based study of the impact of our proposed attack variations on the WSCC 9 bus system. Our simulations show that an adversary can cause devastating effects on the power grid, which might result in blackout and cascading failure by comprising a small number of EVCSs.


Sign in / Sign up

Export Citation Format

Share Document