A new Fuzzy Logic architecture to control the DC-bus voltage in grid connected photovoltaic system

Author(s):  
Ilham Nassar-Eddine ◽  
Abdellatif Obbadi ◽  
Karima Et-Torabi ◽  
Hamza Mokhliss ◽  
Assiya Elamiri ◽  
...  
Author(s):  
Meryem Oudda ◽  
Abdeldjebar Hazzab

<span lang="EN-US">In this work, a fuzzy logic controller is used to control the output voltage of a photovoltaic system with a DC-DC converter; type Single Ended Primary Inductor Converter (SEPIC). The system is designed for 210 W solar PV (SCHOTT 210) panel and to feed an average demand of 78 W. This system includes solar panels, SEPIC converter and fuzzy logic controller. The SEPIC converter provides a constant DC bus voltage and its duty cycle controlled by the fuzzy logic controller which is needed to improve PV panel’s utilization efficiency. A fuzzy logic controller (FLC) is also used to generate the PWM signal for the SEPIC converter. </span>


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1132 ◽  
Author(s):  
Yu-En Wu ◽  
Kai-Cheng Hsu

This study proposes a novel three-port bidirectional converter with a three-winding coupled inductor and applies it to a photovoltaic (PV) system to step up the PV system output to a dc bus or dc load while charging the battery. When the PV output is insufficient, battery voltage is stepped up to the dc bus voltage, and when the dc bus has excess energy, it is stepped down to charge the battery. Thus, a three-port bidirectional high step-up/step-down converter is achieved. A three-winding common core coupled inductor is designed and implemented in the converter, and a full-wave doubler circuit is used on the high-voltage side to achieve a high step-up effect. Power switches and diodes in the circuit are shared to achieve bidirectional operation. The output capacitors recover secondary-side leakage inductance energy in the step-up mode, and the third winding can be used to recover primary-side leakage inductance energy to reduce the voltage spike on switching in order to improve the converter’s conversion efficiency. A 500-W three-port bidirectional converter is implemented to verify the feasibility and practicability of the proposed topology. According to the measurement results, the highest efficiency of the PV step-up mode is 95.3%, the highest efficiency of the battery step-up mode is 94.1%, and the highest efficiency of the step-down mode is 94.8%.


Author(s):  
P. Suresh ◽  
D. Kirubakaran

In this paper, an Enhanced Zeta Converter (EZC) along with a high voltage gain converter is presented for DC Bus voltage regulation. The enhanced zeta converter consists of capacitors connected in parallel with the conventional zeta structure. The proposed zeta converter is applied to the Photo Voltaic system (PV) The well known Maximum Power Point Tracking (MPPT)     P &amp; O algorithm is used to extract maximum power from the photovoltaic system. The increased voltage is obtained with reduced number of switches using the proposed structure. The results to the proposed structure are compared with the conventional topology. The proposed converter is simulated using MATLAB and the same is verified with the hardware.


Author(s):  
Ashish Raut ◽  
Sneha Tibude

In order to eliminate the common-mode (CM) leakage current in the transformer less photovoltaic (PV) systems, the concept of the virtual dc bus is proposed in this paper. By connecting the grid neutral line directly to the negative pole of the dc bus, the stray capacitance between the PV panels and the ground is bypassed. As a result, the CM ground leakage current can be suppressed completely. Meanwhile, the virtual dc bus is created to provide the negative voltage level for the negative ac grid current generation. Consequently, the required dc bus voltage is still the same as that of the full-bridge inverter. Based on this concept, a novel transformer less inverter topology is derived, in which the virtual dc bus is realized with the switched capacitor technology. It consists of only five power switches, two capacitors, and a single filter inductor. Therefore, the power electronics cost can be curtailed. This advanced topology can be modulated with the unipolar sinusoidal pulse width modulation (SPWM) and the double frequency SPWM to reduce the output current ripple. As a result, a smaller filter inductor can be used to reduce the size and magnetic losses.


Sign in / Sign up

Export Citation Format

Share Document