Online data segmentation based on clustering algorithm and autoregressive model for human actions recognition

Author(s):  
M. Jiang ◽  
X.L. Liu ◽  
Z. Zhang ◽  
Y. Zhao ◽  
R. Zhang ◽  
...  
Author(s):  
LNC. Prakash K ◽  
G. Surya Narayana ◽  
Mohd Dilshad Ansari ◽  
Vinit Kumar Gunjan

Clustering algorithms are most probably and widely used analysis method for grouping agricultural data with high similarity. For example, one of the most widely used approaches in previous study is K-means, which is simpler, more versatile, and easier to understand and formulate. The only disadvantage of the K-means algorithm has always been that the predetermined set of cluster centres must be prepared ahead of time and provided as feedback. This paper addresses the issue of estimating cluster random centres for data segmentation and proposes a new method for locating appropriate random centres based on the frequency of attribute values. As a consequence of calculating cluster random centres, the number of iterations required to achieve optimum clusters in K-means will be reduced, as will the time required to shape the final clusters. The experimental findings show that our approach is efficient at estimating the right random cluster centres that indicate a fair separation of objects in the given database. The technique observation and comparative test results showed that the new strategy does not use present manual cluster centres, is more efficient in determining the original cluster centres, and therefore more successful in terms of time to converge the actual clusters especially in agricultural data bases.


2013 ◽  
Vol 859 ◽  
pp. 498-502 ◽  
Author(s):  
Zhi Qiang Wei ◽  
Ji An Wu ◽  
Xi Wang

In order to realize the identification of human daily actions, a method of identifying human daily actions is realized in this paper, which transforms this problem into converting human action recognition into analyzing feature sequence. Then the feature sequence combined with improved LCS algorithm could realize the human actions recognition. Data analysis and experimental results show the recognition rate of this method is high and speed is fast, and this applied technology will have broad prospects.


2015 ◽  
Vol 713-715 ◽  
pp. 2152-2155 ◽  
Author(s):  
Shao Ping Zhu

According to the problem that achieves robust human actions recognition from image sequences in computer vision, using the Iterative Querying Heuristic algorithm as a guide, a improved Multiple Instance Learning (MIL) method is proposed for human action recognition in video image sequences. Experiments show that the new method can quickly recognize human actions and achieve high recognition rates, and on the Weizmann database validate our analysis.


Sign in / Sign up

Export Citation Format

Share Document