scholarly journals Anomaly Detection Using Deep Neural Network for IoT Architecture

2021 ◽  
Vol 11 (15) ◽  
pp. 7050
Author(s):  
Zeeshan Ahmad ◽  
Adnan Shahid Khan ◽  
Kashif Nisar ◽  
Iram Haider ◽  
Rosilah Hassan ◽  
...  

The revolutionary idea of the internet of things (IoT) architecture has gained enormous popularity over the last decade, resulting in an exponential growth in the IoT networks, connected devices, and the data processed therein. Since IoT devices generate and exchange sensitive data over the traditional internet, security has become a prime concern due to the generation of zero-day cyberattacks. A network-based intrusion detection system (NIDS) can provide the much-needed efficient security solution to the IoT network by protecting the network entry points through constant network traffic monitoring. Recent NIDS have a high false alarm rate (FAR) in detecting the anomalies, including the novel and zero-day anomalies. This paper proposes an efficient anomaly detection mechanism using mutual information (MI), considering a deep neural network (DNN) for an IoT network. A comparative analysis of different deep-learning models such as DNN, Convolutional Neural Network, Recurrent Neural Network, and its different variants, such as Gated Recurrent Unit and Long Short-term Memory is performed considering the IoT-Botnet 2020 dataset. Experimental results show the improvement of 0.57–2.6% in terms of the model’s accuracy, while at the same time reducing the FAR by 0.23–7.98% to show the effectiveness of the DNN-based NIDS model compared to the well-known deep learning models. It was also observed that using only the 16–35 best numerical features selected using MI instead of 80 features of the dataset result in almost negligible degradation in the model’s performance but helped in decreasing the overall model’s complexity. In addition, the overall accuracy of the DL-based models is further improved by almost 0.99–3.45% in terms of the detection accuracy considering only the top five categorical and numerical features.

2021 ◽  
Vol 1 (1) ◽  
pp. 33-44
Author(s):  
Zahraa Z. Edie ◽  
Ammar D. Jasim

In this paper, we propose a malware classification and detection framework using transfer learning based on existing Deep Learning models that have been pre-trained on massive image datasets, we applied a deep Convolutional Neural Network (CNN) based on Xception model to perform malware image classification. The Xception model is a recently developed special CNN architecture that is more powerful with less overfitting problems than the current popular CNN models such as VGG16, The experimental results on a Malimg Dataset which is comprising 9,821 samples from 26 different families ,Malware samples are represented as byteplot grayscale images and a deep neural network is trained freezing the convolutional layers of Xception model adapting the last layer to malware family classification , The performance of our approach was compared with other methods including KNN, SVM, VGG16 etc. , the Xception model can effectively be used to classify and detect  malware families and  achieve the highest validation accuracy  than all other approaches including VGG16 model which are using image-based malware, our approach does not require any features engineering, making it more effective to adapt to any future evolution in malware, and very much less time consuming than the champion’s solution.


2020 ◽  
Vol 12 (6) ◽  
pp. 2475 ◽  
Author(s):  
Jae-joon Chung ◽  
Hyun-Jung Kim

This paper elucidates the development of a deep learning–based driver assistant that can prevent driving accidents arising from drowsiness. As a precursor to this assistant, the relationship between the sensation of sleep depravity among drivers during long journeys and CO2 concentrations in vehicles is established. Multimodal signals are collected by the assistant using five sensors that measure the levels of CO, CO2, and particulate matter (PM), as well as the temperature and humidity. These signals are then transmitted to a server via the Internet of Things, and a deep neural network utilizes this information to analyze the air quality in the vehicle. The deep network employs long short-term memory (LSTM), skip-generative adversarial network (GAN), and variational auto-encoder (VAE) models to build an air quality anomaly detection model. The deep learning models gather data via LSTM, while the semi-supervised deep learning models collect data via GANs and VAEs. The purpose of this assistant is to provide vehicle air quality information, such as PM alerts and sleep-deprived driving alerts, to drivers in real time and thereby prevent accidents.


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


Author(s):  
Parvathi R. ◽  
Pattabiraman V.

This chapter proposes a hybrid method for classification of the objects based on deep neural network and a similarity-based search algorithm. The objects are pre-processed with external conditions. After pre-processing and training different deep learning networks with the object dataset, the authors compare the results to find the best model to improve the accuracy of the results based on the features of object images extracted from the feature vector layer of a neural network. RPFOREST (random projection forest) model is used to predict the approximate nearest images. ResNet50, InceptionV3, InceptionV4, and DenseNet169 models are trained with this dataset. A proposal for adaptive finetuning of the deep learning models by determining the number of layers required for finetuning with the help of the RPForest model is given, and this experiment is conducted using the Xception model.


2019 ◽  
Vol 11 (13) ◽  
pp. 1584 ◽  
Author(s):  
Yang Chen ◽  
Won Suk Lee ◽  
Hao Gan ◽  
Natalia Peres ◽  
Clyde Fraisse ◽  
...  

Strawberry growers in Florida suffer from a lack of efficient and accurate yield forecasts for strawberries, which would allow them to allocate optimal labor and equipment, as well as other resources for harvesting, transportation, and marketing. Accurate estimation of the number of strawberry flowers and their distribution in a strawberry field is, therefore, imperative for predicting the coming strawberry yield. Usually, the number of flowers and their distribution are estimated manually, which is time-consuming, labor-intensive, and subjective. In this paper, we develop an automatic strawberry flower detection system for yield prediction with minimal labor and time costs. The system used a small unmanned aerial vehicle (UAV) (DJI Technology Co., Ltd., Shenzhen, China) equipped with an RGB (red, green, blue) camera to capture near-ground images of two varieties (Sensation and Radiance) at two different heights (2 m and 3 m) and built orthoimages of a 402 m2 strawberry field. The orthoimages were automatically processed using the Pix4D software and split into sequential pieces for deep learning detection. A faster region-based convolutional neural network (R-CNN), a state-of-the-art deep neural network model, was chosen for the detection and counting of the number of flowers, mature strawberries, and immature strawberries. The mean average precision (mAP) was 0.83 for all detected objects at 2 m heights and 0.72 for all detected objects at 3 m heights. We adopted this model to count strawberry flowers in November and December from 2 m aerial images and compared the results with a manual count. The average deep learning counting accuracy was 84.1% with average occlusion of 13.5%. Using this system could provide accurate counts of strawberry flowers, which can be used to forecast future yields and build distribution maps to help farmers observe the growth cycle of strawberry fields.


2019 ◽  
Vol 9 (15) ◽  
pp. 3174 ◽  
Author(s):  
Zhou ◽  
Li ◽  
Shen

The in-vehicle controller area network (CAN) bus is one of the essential components for autonomous vehicles, and its safety will be one of the greatest challenges in the field of intelligent vehicles in the future. In this paper, we propose a novel system that uses a deep neural network (DNN) to detect anomalous CAN bus messages. We treat anomaly detection as a cross-domain modelling problem, in which three CAN bus data packets as a group are directly imported into the DNN architecture for parallel training with shared weights. After that, three data packets are represented as three independent feature vectors, which corresponds to three different types of data sequences, namely anchor, positive and negative. The proposed DNN architecture is an embedded triplet loss network that optimizes the distance between the anchor example and the positive example, makes it smaller than the distance between the anchor example and the negative example, and realizes the similarity calculation of samples, which were originally used in face detection. Compared to traditional anomaly detection methods, the proposed method to learn the parameters with shared-weight could improve detection efficiency and detection accuracy. The whole detection system is composed of the front-end and the back-end, which correspond to deep network and triplet loss network, respectively, and are trainable in an end-to-end fashion. Experimental results demonstrate that the proposed technology can make real-time responses to anomalies and attacks to the CAN bus, and significantly improve the detection ratio. To the best of our knowledge, the proposed method is the first used for anomaly detection in the in-vehicle CAN bus.


2021 ◽  
Author(s):  
Noor Ahmad ◽  
Muhammad Aminu ◽  
Mohd Halim Mohd Noor

Deep learning approaches have attracted a lot of attention in the automatic detection of Covid-19 and transfer learning is the most common approach. However, majority of the pre-trained models are trained on color images, which can cause inefficiencies when fine-tuning the models on Covid-19 images which are often grayscale. To address this issue, we propose a deep learning architecture called CovidNet which requires a relatively smaller number of parameters. CovidNet accepts grayscale images as inputs and is suitable for training with limited training dataset. Experimental results show that CovidNet outperforms other state-of-the-art deep learning models for Covid-19 detection.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0246126
Author(s):  
Gabriel Z. Espinoza ◽  
Rafaela M. Angelo ◽  
Patricia R. Oliveira ◽  
Kathia M. Honorio

Computational methods have been widely used in drug design. The recent developments in machine learning techniques and the ever-growing chemical and biological databases are fertile ground for discoveries in this area. In this study, we evaluated the performance of Deep Learning models in comparison to Random Forest, and Support Vector Regression for predicting the biological activity (pIC50) of ALK-5 inhibitors as candidates to treat cancer. The generalization power of the models was assessed by internal and external validation procedures. A deep neural network model obtained the best performance in this comparative study, achieving a coefficient of determination of 0.658 on the external validation set with mean square error and mean absolute error of 0.373 and 0.450, respectively. Additionally, the relevance of the chemical descriptors for the prediction of biological activity was estimated using Permutation Importance. We can conclude that the forecast model obtained by the deep neural network is suitable for the problem and can be employed to predict the biological activity of new ALK-5 inhibitors.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiarui Feng ◽  
Heming Zhang ◽  
Fuhai Li

Abstract Background Survival analysis is an important part of cancer studies. In addition to the existing Cox proportional hazards model, deep learning models have recently been proposed in survival prediction, which directly integrates multi-omics data of a large number of genes using the fully connected dense deep neural network layers, which are hard to interpret. On the other hand, cancer signaling pathways are important and interpretable concepts that define the signaling cascades regulating cancer development and drug resistance. Thus, it is important to investigate potential associations between patient survival and individual signaling pathways, which can help domain experts to understand deep learning models making specific predictions. Results In this exploratory study, we proposed to investigate the relevance and influence of a set of core cancer signaling pathways in the survival analysis of cancer patients. Specifically, we built a simplified and partially biologically meaningful deep neural network, DeepSigSurvNet, for survival prediction. In the model, the gene expression and copy number data of 1967 genes from 46 major signaling pathways were integrated in the model. We applied the model to four types of cancer and investigated the influence of the 46 signaling pathways in the cancers. Interestingly, the interpretable analysis identified the distinct patterns of these signaling pathways, which are helpful in understanding the relevance of signaling pathways in terms of their application to the prediction of cancer patients’ survival time. These highly relevant signaling pathways, when combined with other essential signaling pathways inhibitors, can be novel targets for drug and drug combination prediction to improve cancer patients’ survival time. Conclusion The proposed DeepSigSurvNet model can facilitate the understanding of the implications of signaling pathways on cancer patients’ survival by integrating multi-omics data and clinical factors.


2021 ◽  
Vol 21 (3) ◽  
pp. 175-188
Author(s):  
Sumaiya Thaseen Ikram ◽  
Aswani Kumar Cherukuri ◽  
Babu Poorva ◽  
Pamidi Sai Ushasree ◽  
Yishuo Zhang ◽  
...  

Abstract Intrusion Detection Systems (IDSs) utilise deep learning techniques to identify intrusions with maximum accuracy and reduce false alarm rates. The feature extraction is also automated in these techniques. In this paper, an ensemble of different Deep Neural Network (DNN) models like MultiLayer Perceptron (MLP), BackPropagation Network (BPN) and Long Short Term Memory (LSTM) are stacked to build a robust anomaly detection model. The performance of the ensemble model is analysed on different datasets, namely UNSW-NB15 and a campus generated dataset named VIT_SPARC20. Other types of traffic, namely unencrypted normal traffic, normal encrypted traffic, encrypted and unencrypted malicious traffic, are captured in the VIT_SPARC20 dataset. Encrypted normal and malicious traffic of VIT_SPARC20 is categorised by the deep learning models without decrypting its contents, thus preserving the confidentiality and integrity of the data transmitted. XGBoost integrates the results of each deep learning model to achieve higher accuracy. From experimental analysis, it is inferred that UNSW_ NB results in a maximal accuracy of 99.5%. The performance of VIT_SPARC20 in terms of accuracy, precision and recall are 99.4%. 98% and 97%, respectively.


Sign in / Sign up

Export Citation Format

Share Document