scholarly journals A Lightweight Single-Camera Polarization Compass with Covariance Estimation

Author(s):  
Wolfgang Sturzl
2015 ◽  
Author(s):  
Ami Wiesel ◽  
Teng Zhang

2010 ◽  
Vol 1 (1) ◽  
pp. 51-62
Author(s):  
Marta Braun

Eadweard Muybridge's 1887 photographic atlas Animal Locomotion is a curious mixture of art and science, a polysemic text that has been subject to a number of readings. This paper focuses on Muybridge's technology. It seeks to understand his commitment to making photographs with a battery of cameras rather than a single camera. It suggests reasons for his choice of apparatus and shows how his final work, The Human Figure in Motion (1901), justifies the choices he made.


Author(s):  
W. Jenny Shi ◽  
Jan Hannig ◽  
Randy C. S. Lai ◽  
Thomas C. M. Lee

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2232
Author(s):  
Antonio Albiol ◽  
Alberto Albiol ◽  
Carlos Sánchez de Merás

Automated fruit inspection using cameras involves the analysis of a collection of views of the same fruit obtained by rotating a fruit while it is transported. Conventionally, each view is analyzed independently. However, in order to get a global score of the fruit quality, it is necessary to match the defects between adjacent views to prevent counting them more than once and assert that the whole surface has been examined. To accomplish this goal, this paper estimates the 3D rotation undergone by the fruit using a single camera. A 3D model of the fruit geometry is needed to estimate the rotation. This paper proposes to model the fruit shape as a 3D spheroid. The spheroid size and pose in each view is estimated from the silhouettes of all views. Once the geometric model has been fitted, a single 3D rotation for each view transition is estimated. Once all rotations have been estimated, it is possible to use them to propagate defects to neighbor views or to even build a topographic map of the whole fruit surface, thus opening the possibility to analyze a single image (the map) instead of a collection of individual views. A large effort was made to make this method as fast as possible. Execution times are under 0.5 ms to estimate each 3D rotation on a standard I7 CPU using a single core.


Biometrika ◽  
2020 ◽  
Author(s):  
Zhenhua Lin ◽  
Jane-Ling Wang ◽  
Qixian Zhong

Summary Estimation of mean and covariance functions is fundamental for functional data analysis. While this topic has been studied extensively in the literature, a key assumption is that there are enough data in the domain of interest to estimate both the mean and covariance functions. In this paper, we investigate mean and covariance estimation for functional snippets in which observations from a subject are available only in an interval of length strictly (and often much) shorter than the length of the whole interval of interest. For such a sampling plan, no data is available for direct estimation of the off-diagonal region of the covariance function. We tackle this challenge via a basis representation of the covariance function. The proposed estimator enjoys a convergence rate that is adaptive to the smoothness of the underlying covariance function, and has superior finite-sample performance in simulation studies.


Sign in / Sign up

Export Citation Format

Share Document