Learning-Based Shadow Detection in Aerial Imagery Using Automatic Training Supervision from 3D Point Clouds

Author(s):  
Deniz Kavzak Ufuktepe ◽  
Jaired Collins ◽  
Ekincan Ufuktepe ◽  
Joshua Fraser ◽  
Timothy Krock ◽  
...  
Author(s):  
D. Frommholz ◽  
M. Linkiewicz ◽  
H. Meissner ◽  
D. Dahlke ◽  
A. Poznanska

This paper proposes a method for the reconstruction of city buildings with automatically derived textures that can be directly used for façade element classification. Oblique and nadir aerial imagery recorded by a multi-head camera system is transformed into dense 3D point clouds and evaluated statistically in order to extract the hull of the structures. For the resulting wall, roof and ground surfaces high-resolution polygonal texture patches are calculated and compactly arranged in a texture atlas without resampling. The façade textures subsequently get analyzed by a commercial software package to detect possible windows whose contours are projected into the original oriented source images and sparsely ray-casted to obtain their 3D world coordinates. With the windows being reintegrated into the previously extracted hull the final building models are stored as semantically annotated CityGML ”LOD-2.5” objects.


Author(s):  
Johnny Cusicanqui ◽  
Norman Kerle ◽  
Francesco Nex

Abstract. Remote sensing has evolved into the most efficient approach to assess post-disaster structural damage, in extensively affected areas through the use of space-borne data. For smaller, and in particular, complex urban disaster scenes, multi-perspective aerial imagery obtained with Unmanned Aerial Vehicles and derived dense colour 3D-models are increasingly being used. These type of data allow the direct and automated recognition of damage-related features, supporting an effective post-disaster structural damage assessment. However, the rapid collection and sharing of multi-perspective aerial imagery is still limited due to tight or lacking regulations and legal frameworks. A potential alternative is aerial video footage, typically acquired and shared by civil protection institutions or news media, and which tend to be the first type of airborne data available. Nevertheless, inherent artifacts and the lack of suitable processing means, have long limited its potential use in structural damage assessment and other post-disaster activities. In this research the usability of modern aerial video data was evaluated based on a comparative quality and application analysis of video data and multi-perspective imagery (photos), and their derivative 3D point clouds created using current photogrammetric techniques. Additionally, the effects of external factors, such as topography and the presence of smoke and moving objects were determined by analyzing two different earthquake-affected sites: Tainan (Taiwan) and Pescara del Tronto (Italy). Results demonstrated similar usabilities for video and photos. This is shown by the short 2 cm of difference between the accuracies of video and photo-based 3D Point clouds. Despite the low video resolution, the usability of this data was compensated by a small ground sampling distance. Instead of video characteristics, low quality and application resulted from non-data related factors, such as changes in the scene, lack of texture or moving objects. We conclude that current video data are not only more rapidly available than photos, but they also have a comparable ability to assist in image-based structural damage assessment and other post-disaster activities.


2021 ◽  
Author(s):  
Carlos Paredes ◽  
Rogelio De la Vega-Panizo ◽  
Miguel Ángel Ropero

Despite today's extensive remote sensing imagery with all kinds of sensors, the use of old aerial imagery is still importantin the study of slowly evolving land processes to reconstruct past landscape forms. Numerous organisations sharephotogrammetric data in public repositories, offering opportunities to exploit them to identify historical, natural andanthropogenic topographic changes, which is particularly interesting if they are difficult to access areas, possibly affectedsince historic times by climate change and other geodynamic processes. This work proposes and applies a workflow basedon the SfM-MVS photogrammetric technique to 22 and 33 historical aerial photographs of the English FIDASE (1956/57)and Argentinean Navy (1968) flights, scanned at 1016dpi and 96dpi, black and white, of Deception Island (South Shetland,Antarctica). The photogrammetric processing controls the threshold values of the reconstruction uncertainties andprojection accuracy. The 3D point clouds obtained are geroreferenced with 37 ground control points (GCP) geographicallypositioned in a QuickBird2 satellite image over island areas not affected by volcanism. The quality of the DTM is controlledby comparison with the 1960 topographic map 1:25000 of the island, which allows the volumes of material emitted in thevolcanic eruption of 1967 to be evaluated. The results obtained improve considerably and extend the set of resultscompared to those obtained by classical contour line digitizing. The applied method, the DTM and orthomosaic of 1956and 1968 presented will allow us to evaluate, together with the analysis applied to later historical flights, English 1979 andChilean 1986, the recent changes produced by the recent volcanism, the local external geodynamics, the possible climaticdeterioration and the scope of current human activity from 1956 to the present day.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1228
Author(s):  
Ting On Chan ◽  
Linyuan Xia ◽  
Yimin Chen ◽  
Wei Lang ◽  
Tingting Chen ◽  
...  

Ancient pagodas are usually parts of hot tourist spots in many oriental countries due to their unique historical backgrounds. They are usually polygonal structures comprised by multiple floors, which are separated by eaves. In this paper, we propose a new method to investigate both the rotational and reflectional symmetry of such polygonal pagodas through developing novel geometric models to fit to the 3D point clouds obtained from photogrammetric reconstruction. The geometric model consists of multiple polygonal pyramid/prism models but has a common central axis. The method was verified by four datasets collected by an unmanned aerial vehicle (UAV) and a hand-held digital camera. The results indicate that the models fit accurately to the pagodas’ point clouds. The symmetry was realized by rotating and reflecting the pagodas’ point clouds after a complete leveling of the point cloud was achieved using the estimated central axes. The results show that there are RMSEs of 5.04 cm and 5.20 cm deviated from the perfect (theoretical) rotational and reflectional symmetries, respectively. This concludes that the examined pagodas are highly symmetric, both rotationally and reflectionally. The concept presented in the paper not only work for polygonal pagodas, but it can also be readily transformed and implemented for other applications for other pagoda-like objects such as transmission towers.


2021 ◽  
Vol 5 (1) ◽  
pp. 59
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

Terrestrial laser scanners (TLS) capture a large number of 3D points rapidly, with high precision and spatial resolution. These scanners are used for applications as diverse as modeling architectural or engineering structures, but also high-resolution mapping of terrain. The noise of the observations cannot be assumed to be strictly corresponding to white noise: besides being heteroscedastic, correlations between observations are likely to appear due to the high scanning rate. Unfortunately, if the variance can sometimes be modeled based on physical or empirical considerations, the latter are more often neglected. Trustworthy knowledge is, however, mandatory to avoid the overestimation of the precision of the point cloud and, potentially, the non-detection of deformation between scans recorded at different epochs using statistical testing strategies. The TLS point clouds can be approximated with parametric surfaces, such as planes, using the Gauss–Helmert model, or the newly introduced T-splines surfaces. In both cases, the goal is to minimize the squared distance between the observations and the approximated surfaces in order to estimate parameters, such as normal vector or control points. In this contribution, we will show how the residuals of the surface approximation can be used to derive the correlation structure of the noise of the observations. We will estimate the correlation parameters using the Whittle maximum likelihood and use comparable simulations and real data to validate our methodology. Using the least-squares adjustment as a “filter of the geometry” paves the way for the determination of a correlation model for many sensors recording 3D point clouds.


2021 ◽  
Vol 42 (7) ◽  
pp. 2463-2484
Author(s):  
Kexin Zhu ◽  
Xiaodan Ma ◽  
Haiou Guan ◽  
Jiarui Feng ◽  
Zhichao Zhang ◽  
...  

2021 ◽  
Vol 42 (15) ◽  
pp. 5721-5742
Author(s):  
Zhichao Zhang ◽  
Xiaodan Ma ◽  
Haiou Guan ◽  
Kexin Zhu ◽  
Jiarui Feng ◽  
...  

2021 ◽  
Vol 10 (5) ◽  
pp. 345
Author(s):  
Konstantinos Chaidas ◽  
George Tataris ◽  
Nikolaos Soulakellis

In a post-earthquake scenario, the semantic enrichment of 3D building models with seismic damage is crucial from the perspective of disaster management. This paper aims to present the methodology and the results for the Level of Detail 3 (LOD3) building modelling (after an earthquake) with the enrichment of the semantics of the seismic damage based on the European Macroseismic Scale (EMS-98). The study area is the Vrisa traditional settlement on the island of Lesvos, Greece, which was affected by a devastating earthquake of Mw = 6.3 on 12 June 2017. The applied methodology consists of the following steps: (a) unmanned aircraft systems (UAS) nadir and oblique images are acquired and photogrammetrically processed for 3D point cloud generation, (b) 3D building models are created based on 3D point clouds and (c) 3D building models are transformed into a LOD3 City Geography Markup Language (CityGML) standard with enriched semantics of the related seismic damage of every part of the building (walls, roof, etc.). The results show that in following this methodology, CityGML LOD3 models can be generated and enriched with buildings’ seismic damage. These models can assist in the decision-making process during the recovery phase of a settlement as well as be the basis for its monitoring over time. Finally, these models can contribute to the estimation of the reconstruction cost of the buildings.


2021 ◽  
Vol 13 (9) ◽  
pp. 1859
Author(s):  
Xiangyang Liu ◽  
Yaxiong Wang ◽  
Feng Kang ◽  
Yang Yue ◽  
Yongjun Zheng

The characteristic parameters of Citrus grandis var. Longanyou canopies are important when measuring yield and spraying pesticides. However, the feasibility of the canopy reconstruction method based on point clouds has not been confirmed with these canopies. Therefore, LiDAR point cloud data for C. grandis var. Longanyou were obtained to facilitate the management of groves of this species. Then, a cloth simulation filter and European clustering algorithm were used to realize individual canopy extraction. After calculating canopy height and width, canopy reconstruction and volume calculation were realized using six approaches: by a manual method and using five algorithms based on point clouds (convex hull, CH; convex hull by slices; voxel-based, VB; alpha-shape, AS; alpha-shape by slices, ASBS). ASBS is an innovative algorithm that combines AS with slices optimization, and can best approximate the actual canopy shape. Moreover, the CH algorithm had the shortest run time, and the R2 values of VCH, VVB, VAS, and VASBS algorithms were above 0.87. The volume with the highest accuracy was obtained from the ASBS algorithm, and the CH algorithm had the shortest computation time. In addition, a theoretical but preliminarily system suitable for the calculation of the canopy volume of C. grandis var. Longanyou was developed, which provides a theoretical reference for the efficient and accurate realization of future functional modules such as accurate plant protection, orchard obstacle avoidance, and biomass estimation.


Sign in / Sign up

Export Citation Format

Share Document