Adversarial Deep Learning for Cognitive Radio Security: Jamming Attack and Defense Strategies

Author(s):  
Yi Shi ◽  
Yalin E. Sagduyu ◽  
Tugba Erpek ◽  
Kemal Davaslioglu ◽  
Zhuo Lu ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Ruoxi Qin ◽  
Linyuan Wang ◽  
Wanting Yu ◽  
...  

In image classification of deep learning, adversarial examples where input is intended to add small magnitude perturbations may mislead deep neural networks (DNNs) to incorrect results, which means DNNs are vulnerable to them. Different attack and defense strategies have been proposed to better research the mechanism of deep learning. However, those researches in these networks are only for one aspect, either an attack or a defense. There is in the improvement of offensive and defensive performance, and it is difficult to promote each other in the same framework. In this paper, we propose Cycle-Consistent Adversarial GAN (CycleAdvGAN) to generate adversarial examples, which can learn and approximate the distribution of the original instances and adversarial examples, especially promoting attackers and defenders to confront each other and improve their ability. For CycleAdvGAN, once the GeneratorA and D are trained, GA can generate adversarial perturbations efficiently for any instance, improving the performance of the existing attack methods, and GD can generate recovery adversarial examples to clean instances, defending against existing attack methods. We apply CycleAdvGAN under semiwhite-box and black-box settings on two public datasets MNIST and CIFAR10. Using the extensive experiments, we show that our method has achieved the state-of-the-art adversarial attack method and also has efficiently improved the defense ability, which made the integration of adversarial attack and defense come true. In addition, it has improved the attack effect only trained on the adversarial dataset generated by any kind of adversarial attack.


2020 ◽  
Author(s):  
Tam ngoc Nguyen

We proposes a new scientific model that enables the ability to collect evidence, and explain the motivations behind people's cyber malicious/ethical behaviors. Existing models mainly focus on detecting already-committed actions and associated response strategies, which is not proactive. That is the reason why little has been done in order to prevent malicious behaviors early, despite the fact that issues like insider threats cost corporations billions of dollars annually, and its time to detection often lasts for more than a year.We address those problems by our main contributions of:+ A better model for ethical/malicious behavioral analysis with a strong focus on understanding people's motivations. + Research results regarding ethical behaviors of more than 200 participants, during the historic Covid-19 pandemic. + Novel attack and defense strategies based on validated model and survey results. + Strategies for continuous model development and integration, utilizing latest technologies such as natural language processing, and machine learning. We employed mixed-mode research approach of: integrating and combining proven behavioral science models, case studying of hackers, survey research, quantitative analysis, and qualitative analysis. For practical deployments, corporations may utilize our model in: improving HR processes and research, prioritizing plans based on the model's informed human behavioral metrics, better analysis in existing or potential cyber insider threat cases, generating more defense tactics in information warfare and so on.


2021 ◽  
Vol 1865 (2) ◽  
pp. 022043
Author(s):  
JinFeng Li ◽  
Bingcheng Sun ◽  
Hongfeng Cui

Author(s):  
Dianqi Han ◽  
Ang Li ◽  
Lili Zhang ◽  
Yan Zhang ◽  
Jiawei Li ◽  
...  

Author(s):  
Ismail Melih Tas ◽  
Onur Ozbirecikli ◽  
Ugur Cagai ◽  
Erhan Taskin ◽  
Huseyin Tas

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3913 ◽  
Author(s):  
Mingxuan Li ◽  
Ou Li ◽  
Guangyi Liu ◽  
Ce Zhang

With the recently explosive growth of deep learning, automatic modulation recognition has undergone rapid development. Most of the newly proposed methods are dependent on large numbers of labeled samples. We are committed to using fewer labeled samples to perform automatic modulation recognition in the cognitive radio domain. Here, a semi-supervised learning method based on adversarial training is proposed which is called signal classifier generative adversarial network. Most of the prior methods based on this technology involve computer vision applications. However, we improve the existing network structure of a generative adversarial network by adding the encoder network and a signal spatial transform module, allowing our framework to address radio signal processing tasks more efficiently. These two technical improvements effectively avoid nonconvergence and mode collapse problems caused by the complexity of the radio signals. The results of simulations show that compared with well-known deep learning methods, our method improves the classification accuracy on a synthetic radio frequency dataset by 0.1% to 12%. In addition, we verify the advantages of our method in a semi-supervised scenario and obtain a significant increase in accuracy compared with traditional semi-supervised learning methods.


Author(s):  
Huanlai Xing ◽  
Haoxiang Qin ◽  
Shouxi Luo ◽  
Penglin Dai ◽  
Lexi Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document