On Automatic Resonant Frequency Tracking in LLC Series Resonant Converter Based on Zero-Current Duration Time of Secondary Diode

Author(s):  
Hong Li ◽  
Zhiyuan Jiang
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4341
Author(s):  
Sang Gab Park ◽  
Byoung Kuk Lee ◽  
Jong Soo Kim

This paper presents a tightly regulated multi-output isolated converter that employs only an independently regulated synchronous Single-Switched Post-Regulator (SSPR). The proposed converter is a highly accurate single-ended secondary side post-regulator based on a Series Resonant Converter (SRC); furthermore, it has a voltage-doubler characteristic. The proposed post-regulator requires only one auxiliary switch, in contrast with a bulky and expensive non-isolated DC–DC converter. Moreover, the added voltage-doubler can tightly regulate the slave output current. In addition, the voltage-doubler can improve electromagnetic interference characteristics and reduce switching losses arising from the Zero Current Switching (ZCS) operation of all power switches. The validity of the proposed converter is verified using experimental results obtained via a prototype converter applicable to an LED 3D TV power supply.


2013 ◽  
Vol 768 ◽  
pp. 388-391
Author(s):  
M. Santhosh Rani ◽  
Julie Samantaray ◽  
Subhransu Sekhar Dash

This paper presents a novel application of full-bridge series parallel resonant converter (FBSPRC) for dc source and secondary battery interface. Secondary batteries has been widely used in the application of residential, industrial and commercial energy storage systems because of its low energy conversion loss, which enhances the systems overall efficiency. A series parallel loaded resonant converter (SPRC) which is a subset of DC-DC converter can be operated with either zero-voltage turn-on (above resonant frequency) or zero current turn off (below resonant frequency) to eliminate the turn on and turn-off losses of the semiconductor devices. This converter is widely used to achieve reduction in size of the passive components of the converter such as inductor, capacitor and transformers. Simulation results based on a 12V 45Ah battery charger are proposed to validate the analysis and to demonstrate the performance of the proposed approach. Satisfactory performance is obtained from the measured results. The simulation results validate the effectiveness of the chosen battery charger.


Sign in / Sign up

Export Citation Format

Share Document