Knowledge base views in multiuser knowledge based systems

Author(s):  
A. Basu
Author(s):  
Samir Rohatgi ◽  
James H. Oliver ◽  
Stuart S. Chen

Abstract This paper describes the development of OPGEN (Opportunity Generator), a computer based system to help identify areas where a knowledge based system (KBS) might be beneficial, and to evaluate whether a suitable system could be developed in that area. The core of the system is a knowledge base used to carry out the identification and evaluation functions. Ancillary functions serve to introduce and demonstrate KBS technology to enhance the overall effectiveness of the system. All aspects of the development, from knowledge acquisition through to testing are presented in this paper.


Author(s):  
Ram Kumar ◽  
Shailesh Jaloree ◽  
R. S. Thakur

Knowledge-based systems have become widespread in modern years. Knowledge-base developers need to be able to share and reuse knowledge bases that they build. As a result, interoperability among different knowledge-representation systems is essential. Domain ontology seeks to reduce conceptual and terminological confusion among users who need to share various kind of information. This paper shows how these structures make it possible to bridge the gap between standard objects and Knowledge-based Systems.


2021 ◽  
Author(s):  
Valeriya V. Gribova ◽  
Elena A. Shalfeeva

Abstract With highly increased competition, intelligent product manufacturing based on interpretable knowledge bases has been recognized as an effective method for building applications of explainable Artificial Intelligence that is the hottest topic in the field of Artificial Intelligence. The success of product family directly depends on how effective the viability mechanisms are laid down in its design. In this paper, a systematic cloud-based set of tool family is proposed to develop viable knowledge-based systems. For productive participation of domain and cognitive specialists in manufacturing, the knowledge base should be declarative, testable and integratable with other architectural components. Mechanisms to ensure KBS viability are provided in an ontology-oriented development environment, where each component is formed in terms of domain ontology by using the adaptable instrumental support. Due to the explicit separation of ontology from knowledge, it became possible to divide competencies between specialists creating an ontology and specialists creating a knowledge base. We rely on the fact that the activity of creating an ontology is significantly different from the activity of creating a knowledge base. Creating an ontology is a creative process that requires a systematic analysis of the domain area in order to identify common patterns among its knowledge.The characteristic properties of knowledge-based systems related to viability are described. It is explained, how these properties are provided in development environments implemented on cloud platform. The concept of a specialized manufacturing environment for knowledge-based system is introduced. The necessary set of tools for such ontology-oriented environment construction is determined. The example of tools for creating specialized manufacturing environments is the instruments implemented on the «IACPaaS» platform. The IACPaaS is already used for collective development of thematic cloud knowledge portals with viable knowledge-based systems. This specialized manufacturing environment has enabled the creation of multi-purpose medical software services to support specialist solutions based on knowledge being remotely improved by experts.


Author(s):  
HAO XING ◽  
SAMUEL H. HUANG ◽  
J. SHI

This paper presents a novel approach, which is based on integrated (automatic/interactive) knowledge acquisition, to rapidly develop knowledge-based systems. Linguistic rules compatible with heuristic expert knowledge are used to construct the knowledge base. A fuzzy inference mechanism is used to query the knowledge base for problem solving. Compared with the traditional interview-based knowledge acquisition, our approach is more flexible and requires a shorter development cycle. The traditional approach requires several rounds of interviews (both structured and unstructured). However, our method involves an optional initial interview, followed by data collection, automatic rule generation, and an optional final interview/rule verification process. The effectiveness of our approach is demonstrated through a benchmark case study and a real-life manufacturing application.


1993 ◽  
Vol 02 (03) ◽  
pp. 349-372 ◽  
Author(s):  
SUK I. YOO ◽  
CHANG H. PARK

In developing knowledge-based systems, the process of collecting the knowledge from the experts, representing it in certain formats, and verifying it is required. It is however not easy to verify the formulated knowledge base by checking if a desired conclusion is derived by a sequence of inferring steps. This paper suggests a model of inference browsers by which the knowledge engineers may easily consult a sequence of inferring steps and verify the knowledge base. The suggested inference browser provides the environment in which the knowledge engineers may observe a sequence of inferring steps displayed in the graphical form, access directly the contents of the rules and the facts on the sequence, and observed a newly generated sequence of inferring steps when some of the rules or the facts are changed. Further, based on the graphically displayed inferring sequence, the inference browser itself detects the erroneous inferring step if it exists, analyzes it, and corrects the associated errors in the knowledge base. Finally the suggested inference browser is compared to other similar tools in terms of the facilities they provide.


2012 ◽  
Vol 622-623 ◽  
pp. 1415-1420
Author(s):  
Yousif A. Mansoor ◽  
Zhi Qiang Zhang

Over the last several years, many concrete tunnels have been constructed for roads, highways, and railways. For safety in concrete tunnel, periodic inspection has been conducted using many testing technologies and techniques. However, these technologies cannot replace visual inspection because of their slow and complicated procedures. For this reason, the Knowledge-Based Systems (KBS) are used to diagnose R.C tunnel lining crack damage (DICRCTL). In this paper, we attempt to propose an alternative to the human expert, to give technical decisions in diagnosing crack damages in second segment of R.C. tunnel lining. To overcome this requirement, an expert system is developed to achieve the research aim. This proposed system was constructed on a knowledge base that incorporates with the gathered information in the form of rules which is suitable to implement in an expert system environment to diagnostic advisory nature. The proposed application results show an easy, fast and satisfactory answer to engineering needs.


Author(s):  
Daniel Ashlock

Human knowledge was regarded as a transfer process into an applied knowledge base in the early 1980s as the creation of a Knowledge-Based Systems (KBS). The premise behind this transfer was that the KBS-required information already existed and only needed to be gathered and applied. Most of the time, the necessary information was gleaned through talking to professionals about how they handle particular problems. This knowledge was usually put to use in production rules, which were then carried out by a rule interpreter linked to them. Here, we demonstrate a number of new ideas and approaches that have emerged during the last few years. This paper presents MIKE, PROTÉGÉ-II, and Common KADS as three different modeling frameworks that may be used together or separately.


2021 ◽  
Vol 13 (7) ◽  
pp. 172
Author(s):  
Zaenal Akbar ◽  
Hani Febri Mustika ◽  
Dwi Setyo Rini ◽  
Lindung Parningotan Manik ◽  
Ariani Indrawati ◽  
...  

Capsicum is a genus of flowering plants in the Solanaceae family in which the members are well known to have a high economic value. The Capsicum fruits, which are popularly known as peppers or chili, have been widely used by people worldwide. It serves as a spice and raw material for many products such as sauce, food coloring, and medicine. For many years, scientists have studied this plant to optimize its production. A tremendous amount of knowledge has been obtained and shared, as reflected in multiple knowledge-based systems, databases, or information systems. An approach to knowledge-sharing is through the adoption of a common ontology to eliminate knowledge understanding discrepancy. Unfortunately, most of the knowledge-sharing solutions are intended for scientists who are familiar with the subject. On the other hand, there are groups of potential users that could benefit from such systems but have minimal knowledge of the subject. For these non-expert users, finding relevant information from a less familiar knowledge base would be daunting. More than that, users have various degrees of understanding of the available content in the knowledge base. This understanding discrepancy raises a personalization problem. In this paper, we introduce a solution to overcome this challenge. First, we developed an ontology to facilitate knowledge-sharing about Capsicum to non-expert users. Second, we developed a personalized faceted search algorithm that provides multiple structured ways to explore the knowledge base. The algorithm addresses the personalization problem by identifying the degree of understanding about the subject from each user. In this way, non-expert users could explore a knowledge base of Capsicum efficiently. Our solution characterized users into four groups. As a result, our faceted search algorithm defines four types of matching mechanisms, including three ranking mechanisms as the core of our solution. In order to evaluate the proposed method, we measured the predictability degree of produced list of facets. Our findings indicated that the proposed matching mechanisms could tolerate various query types, and a high degree of predictability can be achieved by combining multiple ranking mechanisms. Furthermore, it demonstrates that our approach has a high potential contribution to biodiversity science in general, where many knowledge-based systems have been developed with limited access to users outside of the domain.


1993 ◽  
Vol 8 (4) ◽  
pp. 329-347 ◽  
Author(s):  
Ivan Rankin

A central area of application for knowledge-based systems is for giving consultative advice to the user. Such systems engage the user in a dialogue in the process of collecting enough information to be able to infer a conclusion from the knowledge base. Traditionally, then, the main initiative in the consultation process has been allocated to the system


IEE Review ◽  
1988 ◽  
Vol 34 (1) ◽  
pp. 36
Author(s):  
S.H. Lavington

Sign in / Sign up

Export Citation Format

Share Document