Global trajectory reconstruction from distributed visual sensors

Author(s):  
Gabin Kayumbi ◽  
Nadeem Anjum ◽  
Andrea Cavallaro
2016 ◽  
Author(s):  
Davide Grandi ◽  
Bruna Bertucci ◽  
Matteo Boschini ◽  
Stefano Della torre ◽  
Matteo Duranti ◽  
...  

2020 ◽  
Author(s):  
Pier Giuseppe Sessa ◽  
Valerio De Martinis ◽  
Axel Bomhauer-Beins ◽  
Ulrich Alois Weidmann ◽  
Francesco Corman

Author(s):  
Konstantinos Papoutsakis ◽  
Thodoris Papadopoulos ◽  
Michalis Maniadakis ◽  
Manolis Lourakis ◽  
Maria Pateraki ◽  
...  

Author(s):  
Giacomo Belli ◽  
Emanuele Pace ◽  
Emanuele Marchetti

Summary We present infrasound signals generated by four fireball events occurred in Western Alps between 2016 and 2019 and that were recorded by small aperture arrays at source-to receiver distances < 300 km. Signals consist in a series of short-lived infrasonic arrivals that are closely spaced in time. Each arrival is identified as a cluster of detections with constant wave parameters (back-azimuth and apparent velocity), that change however from cluster to cluster. These arrivals are likely generated by multiple infrasonic sources (fragmentations or hypersonic flow) along the entry trajectory. We developed a method, based on 2D ray-tracing and on the independent optically determined time of the event, to locate the source position of the multiple arrivals from a single infrasonic array data and to reconstruct the 3D trajectory of a meteoroid in the Earth's atmosphere. The trajectories derived from infrasound array analysis are in excellent agreement with trajectories reconstructed from eyewitnesses reports for the four fireballs. Results suggest that the trajectory reconstruction is possible for meteoroid entries located up to ∼300 km from the array, with an accuracy that depends on the source-to-receiver distance and on the signal-to-noise level. We also estimate the energy of the four fireballs using three different empirical laws, based both on period and amplitude of recorded infrasonic signals, and discuss their applicability for the energy estimation of small energy fireball events ($\le 1{\rm{kt\,\,TNT\,\,equivalent}}$).


2021 ◽  
Vol 10 (6) ◽  
pp. 233
Author(s):  
Rasmus Karlsson

While the precautionary principle may have offered a sound basis for managing environmental risk in the Holocene, the depth and width of the Anthropocene have made precaution increasingly untenable. Not only have many ecosystems already been damaged beyond natural recovery, achieving a sustainable long-term global trajectory now seem to require ever greater measures of proactionary risk-taking, in particular in relation to the growing need for climate engineering. At the same time, different optical illusions, arising from temporary emissions reductions due to the COVID-19 epidemic and the local deployment of seemingly “green” small-scale renewable energy sources, tend to obscure worsening global trends and reinforce political disinterest in developing high-energy technologies that would be more compatible with universal human development and worldwide ecological restoration. Yet, given the lack of feedback between the global and the local level, not to mention the role of culture and values in shaping perceptions of “sustainability”, the necessary learning may end up being both epistemologically and politically difficult. This paper explores the problem of finding indicators suitable for measuring progress towards meaningful climate action and the restoration of an ecologically vibrant planet. It is suggested that such indicators are essentially political as they reflect, not only different assessments of technological feasibility, but orientations towards the Enlightenment project.


Sign in / Sign up

Export Citation Format

Share Document