planetary exploration
Recently Published Documents


TOTAL DOCUMENTS

745
(FIVE YEARS 128)

H-INDEX

28
(FIVE YEARS 4)

Author(s):  
Martin Azkarate ◽  
Levin Gerdes ◽  
Tim Wiese ◽  
Martin Zwick ◽  
Marco Pagnamenta ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 1115-1136
Author(s):  
Zhen Song ◽  
Zirong Luo ◽  
Guowu Wei ◽  
Jianzhong Shang

Abstract. A six-wheeled companion exploration robot with an adaptive climbing mechanism is proposed and released for the complicated terrain environment of planetary exploration. Benefiting from its three-rocker-arm structure, the robot can adapt to complex terrain with its six wheels in contact with the ground during locomotion, which improves the stability of the robot. When the robot moves on the flat ground, it moves forward through the rotation of the wheels. When it encounters obstacles in the process of moving forward, the front obstacle-crossing wheels hold the obstacle, and the rocker arms on both sides rotate themselves with mechanical adaptivity to drive the robot to climb and cross the obstacle like crab legs. Furthermore, a parameterized geometric model is established to analyze the motion stability and the obstacle-crossing performance of the robot. To investigate the feasibility and correctness of design theory and robot scheme, a group of design parameters of the robot are determined. A prototype of the robot is developed, and the experiment results show that the robot can maintain stability in rugged terrain environments and has a certain ability to surmount obstacles.


Drones ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Manjula Sharma ◽  
Akshita Gupta ◽  
Sachin Kumar Gupta ◽  
Saeed Hamood Alsamhi ◽  
Alexey V. Shvetsov

In recent years, the area of Unmanned Aerial Vehicles (UAVs) has seen rapid growth. There has been a trend to build and produce UAVs that can carry out planetary exploration throughout the past decade. The technology of UAVs has tremendous potential to support various successful space mission solutions. In general, different techniques for observing space objects are available, such as telescopes, probes, and flying spacecraft, orbiters, landers, and rovers. However, a detailed analysis has been carried out due to the benefits of UAVs relative to other planetary exploration techniques. The deployment of UAVs to other solar bodies has been considered by numerous space agencies worldwide, including NASA. This article contributes to investigating the types of UAVs that have been considered for various planetary explorations. This study further investigates the behaviour of UAV prototypes on Mars’ surface in particular. It has been discovered that a prototype UAV flight on Mars has a higher chance of success. In this research, a prototype UAV has been successfully simulated to fly on Mars’ surface. This article discusses the opportunities, challenges, and future scope of deploying UAVs on Mars.


2021 ◽  
Author(s):  
Angelo Ugenti ◽  
Fabio Vulpi ◽  
Raúl Domínguez ◽  
Florian Cordes ◽  
Annalisa Milella ◽  
...  

2021 ◽  
Vol 217 (8) ◽  
Author(s):  
Wei Zuo ◽  
Chunlai Li ◽  
Zhoubin Zhang ◽  
Xingguo Zeng ◽  
Yuxuan Liu ◽  
...  

AbstractData infrastructure systems such as the National Aeronautics and Space Administration (NASA) Planetary Data System (PDS), European Space Agency (ESA) Planetary Data Archive (PSA)and Japan Aerospace Exploration Agency (JAXA) Data Archive and Transmission System (DARTS) archive large amounts of scientific data obtained through dozens of planetary exploration missions and have made great contributions to studies of lunar and planetary science. Since China started lunar exploration activities in 2007, the Ground Research and Application System (GRAS), one of the five systems developed as part of China’s Lunar Exploration Program (CLEP) and the Planetary Exploration of China (PEC), has gradually established China’s Lunar and Planetary Data System (CLPDS), which involves the archiving, management and long-term preservation of scientific data from China’s lunar and planetary missions; additionally, data are released according to the policies established by the China National Space Administration (CNSA). The scientific data archived by the CLPDS are among the most important achievements of the CLEP and PEC and provide a resource for the international planetary science community. The system plays a key and important role in helping scientists obtain fundamental and original research results, advancing studies of lunar and planetary science in China, and improving China’s international influence in the field of lunar and planetary exploration. This paper, starting from CLEP and PEC mission planning, explains the sources, classification, format and content of the lunar and Mars exploration data archived in the CLPDS. Additionally, the system framework and core functions of the system, such as data archiving, management and release, are described. The system can be used by the international planetary science community to comprehensively understand the data obtained in the CLEP and PEC, help scientists easily access and better use the available data resources, and contribute to fundamental studies of international lunar and planetary science. Moreover, since China has not yet systematically introduced the CLPDS, through this article, international data organizations could learn about this advanced system. Therefore, opportunities for international data cooperation can be created, and the data service capability of the CLPDS can be improved, thus promoting global data sharing and application for all humankind.


Sign in / Sign up

Export Citation Format

Share Document