Implement Even and Odd Stacked Frequency Bins in Cascade Non-Maximally Decimated Analysis and Synthesis Filter Banks

Author(s):  
fred harris ◽  
Elettra Venosa ◽  
Xiaofei Chen ◽  
Chris Dick
Author(s):  
Andrzej Handkiewicz ◽  
Mariusz Naumowicz

AbstractThe paper presents a method of optimizing frequency characteristics of filter banks in terms of their implementation in digital CMOS technologies in nanoscale. Usability of such filters is demonstrated by frequency-interleaved (FI) analog-to-digital converters (ADC). An analysis filter present in these converters was designed in switched-current technique. However, due to huge technological pitch of standard digital CMOS process in nanoscale, its characteristics substantially deviate from the required ones. NANO-studio environment presented in the paper allows adjustment, with transistor channel sizes as optimization parameters. The same environment is used at designing a digital synthesis filter, whereas optimization parameters are input and output conductances, gyration transconductances and capacitances of a prototype circuit. Transition between analog s and digital z domains is done by means of bilinear transformation. Assuming a lossless gyrator-capacitor (gC) multiport network as a prototype circuit, both for analysis and synthesis filter banks in FI ADC, is an implementation of the strategy to design filters with low sensitivity to parameter changes. An additional advantage is designing the synthesis filter as stable infinite impulse response (IIR) instead of commonly used finite impulse response (FIR) filters. It provides several dozen-fold saving in the number of applied multipliers.. The analysis and synthesis filters in FI ADC are implemented as filter pairs. An additional example of three-filter bank demonstrates versatility of NANO-studio software.


2021 ◽  
pp. 853-873
Author(s):  
Stevan Berber

This chapter presents the theoretical description and the principle of the operation of analysis and synthesis filter banks. This is essential material for understanding the modern design of transceivers that are based on discrete-time signal processing. The structure of a quadrature mirror filter bank is presented and the operation of the analysis and synthesis component filters is explained. The condition for a perfect reconstruction of a two-channel filter bank is derived. Based on a two-channel quadrature mirror filter bank, the procedure of making a multichannel quadrature mirror filter bank is presented. A brief description of multilevel filter banks with equal or unequal passband widths is given.


2011 ◽  
Vol 301-303 ◽  
pp. 1452-1457
Author(s):  
Yuan Liang Zhang ◽  
Yan Gao ◽  
Peng Sen Jiang ◽  
Hai Yang Xu

The design philosophy of non-invasive has been introduced in motors monitoring system, in which used air-gap torque to measure efficiency. Zoom-FFT is required for the testing of speed which very few assumed values are required. An efficient implementation of cosine modulated FIR analysis synthesis filter banks is derived. The structures for the analysis and synthesis sections consist of polyphase structure and discrete sine and cosine transform networks. The redundance of computation is removed and the computational efficiency is raised. The implementation structure is simpler. The efficiency of the whole system has been improved, and approved that this algorithm has a good value.


Author(s):  
Ljiljana Milic

The purpose of this chapter is to illustrate by means of examples the construction of the analysis and synthesis filter banks with the use of FIR and IIR two-channel filter banks as the basic building blocks. In Chapter VIII, we have discussed the design and properties of several types of complementary filter pairs, and in Chapters IX and X we have shown how those filter pairs are used in the synthesis of digital filters with sharp spectral constraints. In this chapter, we demonstrate the application of the complementary filter pairs as two-channel filter banks used to decompose the original signal into two channel signals and to reconstruct the original signal from the channel signals. Signal decomposition is referred to as the signal analysis, whereas the signal reconstruction is referred to as the signal synthesis. Thereby, the filter bank used for the signal decomposition is called the analysis filter bank, and the bank used for signal reconstruction is called the synthesis filter bank. The two-channel filter bank is usually composed of a pair of lowpass and highpass halfband filters, which satisfy some complementary properties. The bandwidth that occupies each of two channel signals is a half of the original signal bandwidth. Hence, the channel signals can be processed with the sampling rate which is a half of the original signal sampling rate. At the output of the analysis bank, the channel signals are down-sampled-by-two and then processed at the lower sampling rate. For the signal reconstruction, each of two channel signals has to be up-sampled-by-two first, and then fed into the synthesis bank. The sampling rate alteration in the two-channel filter bank causes the unwanted effects: the downsampling produces aliasing, and the up-sampling produces imaging. The essential feature of the two-channel filter bank is that the aliasing produced in the analysis side can be compensated in the synthesis side. This is achieved by choosing the proper combination of filters in the analysis and synthesis banks. The elimination of aliasing opens the possibility of the perfect (and nearly perfect) reconstruction of the original signal. The perfect reconstruction means that the signal at the output of the cascade connection of the analysis and synthesis bank is a delayed replica of the original input signal. Constructing perfect reconstruction and nearly perfect reconstruction analysis/synthesis filter banks is an unbounded area of research. An important and widely used application of the two-channel filter banks is the construction of multichannel filter banks based on the tree-structures where the two-channel filter bank is used as a building block. In this way, a multilevel multichannel filter bank can be obtained with either uniform or nonuniform separation between the channels. The two-channel filter banks are particularly useful in generating octave filter banks. Depending on applications, the filter bank can be requested to provide frequency-selective separation between the channels, or to preserve the original waveform of the signal. The example applications of the frequency-selective filter banks are audio and telecommunication applications. The importance of preserving the original waveform is related with the images. In the case of the discrete-time wavelet banks, the frequency-selectivity is less important. The main goal is to preserve the waveform of the signal. The purpose of this chapter is to illustrate by means of MATLAB examples the signal analysis and synthesis based on the two-channel filter banks. We give first a brief review of the properties of the two-channel filter banks with the conditions for aliasing elimination. We discuss the perfect reconstruction and nearly perfect reconstruction properties and show the solutions based on FIR and IIR QMF banks and the orthogonal two-channel filter banks. In the sequel, the tree-structured multichannel filter banks are considered. The process of signal decomposition and reconstruction is illustrated by means of examples.


2004 ◽  
Vol 1 (3) ◽  
pp. 45-56 ◽  
Author(s):  
Sanja Damjanovic ◽  
Ljiljana Milic

The design and characteristics of orthonormal two-band QMF filter banks, with perfect reconstruction and linear phase properties, are considered in this paper. The analysis and synthesis filter banks are implemented using all pass filters. Filters in the synthesis bank are ant causal and unstable filters and the block processing technique and an appropriate causal filter are applied for their real time application. The generated filter banks characteristics and the finite block length influence of the block processing technique applied for ant causal filtering are illustrated for a rectangular input signal case. The corresponding wavelet and scaling functions, generated after five iterations of the analysis bank in a low pass branch, are shown.


Sign in / Sign up

Export Citation Format

Share Document