Single-model versus ensemble-model strategies for efficient Gaussian process surrogate modeling of antenna input characteristics

Author(s):  
J. P. Jacobs ◽  
S. Koziel
2021 ◽  
Vol 10 (1) ◽  
pp. 19-34
Author(s):  
S. R. Rathod ◽  
C. Y. Patil

Smoking impacts the pattern of heart rate variability (HRV); HRV therefore acts as a predictor of cardiac diseases (CD). In this study, to predict CD non-invasively among smokers, ensemble machine learning methods have been used. A single model is created based on ensemble voting classifier with a combined boosting technique to improve the accuracy of predictive model. The final ensemble model shows an accuracy of 95.20%, precision of 97.27%, sensitivity of 92.35%, specificity of 98.07%, F1 score of 0.95, AUC of 0.961, MCE of 0.0479, kappa statistics value of 0.9041, and MSE of 0.2189. The obtained accuracy by using the proposed method is the highest value achieved so far for the prediction of CD among smokers using HRV data.


2011 ◽  
Vol 271-273 ◽  
pp. 1286-1290
Author(s):  
Yan Feng Guo ◽  
Na Sun ◽  
Yuan Yao

Credit risk problem is an essential problem in financial management area. People usually employ personal credit scoring to avoid financial risk problem. Although many methods have been proposed for evaluating the personal credit scoring and obtained good effects, most of these methods were called single model types, which would be disturbed by model self-parameter, data noise and other external factors. In order to overcome the weakness of single model, we believe one of best ways is to construct an ensemble model. In this paper, we proposed a new style of ensemble model and employed two public credit datasets to certify the validity of our ensemble model. The experimental result shows that the ensemble SOM-SVM model can overcome the single model weakness and improve the accuracy of classification, which is good for constructing a better credit scoring system in future.


2021 ◽  
Vol 4 (1) ◽  
pp. 72
Author(s):  
Ida Bagus Mandhara Brasika

The aim of this research is to understand the impact of El Nino Modoki into Indonesian precipitation and how ensemble models can simulate this changing. Ensemble model has been recognized as a method to improve the quality of model and/or prediction of climate phenomenon. Every model has their own algorithm which causes strength and weakness in many aspects. Ensemble will improve the quality of simulation while reducing the weakness. However, the combination of models for ensembles is differ for each event and/or location. Here we utilize the Squared Error Skill Score (SESS) method to examine each model quality and to compare the ensemble model with the single model. El Nino Modoki is a unique phenomenon. It remains debatable amongst scientists, many features of this phenomenon are unfold. So, it is important to find out how El Nino Modoki has changed precipitation over Indonesia. To verify the changing precipitation, the composite of precipitation on El Nino Modoki Year is divided with the composite of all years. Last, validating ensemble model with Satellite-gauge precipitation dataset. El Nino Modoki decreases precipitation in most of Indonesian regions. The ensemble, while statistically promising, has failed to simulate precipitation in some region.


Author(s):  
Roxanne A. Moore ◽  
David A. Romero ◽  
Christiaan J. J. Paredis

Computer models and simulations are essential system design tools that allow for improved decision making and cost reductions during all phases of the design process. However, the most accurate models tend to be computationally expensive and can therefore only be used sporadically. Consequently, designers are often forced to choose between exploring many design alternatives with less accurate, inexpensive models and evaluating fewer alternatives with the most accurate models. To achieve both broad exploration of the design space and accurate determination of the best alternatives, surrogate modeling and variable accuracy modeling are gaining in popularity. A surrogate model is a mathematically tractable approximation of a more expensive model based on a limited sampling of that model. Variable accuracy modeling involves a collection of different models of the same system with different accuracies and computational costs. We hypothesize that designers can determine the best solutions more efficiently using surrogate and variable accuracy models. This hypothesis is based on the observation that very poor solutions can be eliminated inexpensively by using only less accurate models. The most accurate models are then reserved for discerning the best solution from the set of good solutions. In this paper, a new approach for global optimization is introduced, which uses variable accuracy models in conjuction with a kriging surrogate model and a sequential sampling strategy based on a Value of Information (VOI) metric. There are two main contributions. The first is a novel surrogate modeling method that accommodates data from any number of different models of varying accuracy and cost. The proposed surrogate model is Gaussian process-based, much like classic kriging modeling approaches. However, in this new approach, the error between the model output and the unknown truth (the real world process) is explicitly accounted for. When variable accuracy data is used, the resulting response surface does not interpolate the data points but provides an approximate fit giving the most weight to the most accurate data. The second contribution is a new method for sequential sampling. Information from the current surrogate model is combined with the underlying variable accuracy models’ cost and accuracy to determine where best to sample next using the VOI metric. This metric is used to mathematically determine where next to sample and with which model. In this manner, the cost of further analysis is explicitly taken into account during the optimization process.


2021 ◽  
pp. 1-25
Author(s):  
Julien Pelamatti ◽  
Loïc Brevault ◽  
Mathieu Balesdent ◽  
El-Ghazali Talbi ◽  
Yannick Guerin

Sign in / Sign up

Export Citation Format

Share Document