Electromagnetic Response from Acoustic Resonance in Indium Antimonide

Author(s):  
Hasan Salehi Najafabadi ◽  
Mark A. Meier ◽  
Gary A. Hallock
2020 ◽  
Vol 63 (1) ◽  
pp. 109-124
Author(s):  
Carly Jo Hosbach-Cannon ◽  
Soren Y. Lowell ◽  
Raymond H. Colton ◽  
Richard T. Kelley ◽  
Xue Bao

Purpose To advance our current knowledge of singer physiology by using ultrasonography in combination with acoustic measures to compare physiological differences between musical theater (MT) and opera (OP) singers under controlled phonation conditions. Primary objectives addressed in this study were (a) to determine if differences in hyolaryngeal and vocal fold contact dynamics occur between two professional voice populations (MT and OP) during singing tasks and (b) to determine if differences occur between MT and OP singers in oral configuration and associated acoustic resonance during singing tasks. Method Twenty-one singers (10 MT and 11 OP) were included. All participants were currently enrolled in a music program. Experimental procedures consisted of sustained phonation on the vowels /i/ and /ɑ/ during both a low-pitch task and a high-pitch task. Measures of hyolaryngeal elevation, tongue height, and tongue advancement were assessed using ultrasonography. Vocal fold contact dynamics were measured using electroglottography. Simultaneous acoustic recordings were obtained during all ultrasonography procedures for analysis of the first two formant frequencies. Results Significant oral configuration differences, reflected by measures of tongue height and tongue advancement, were seen between groups. Measures of acoustic resonance also showed significant differences between groups during specific tasks. Both singer groups significantly raised their hyoid position when singing high-pitched vowels, but hyoid elevation was not statistically different between groups. Likewise, vocal fold contact dynamics did not significantly differentiate the two singer groups. Conclusions These findings suggest that, under controlled phonation conditions, MT singers alter their oral configuration and achieve differing resultant formants as compared with OP singers. Because singers are at a high risk of developing a voice disorder, understanding how these two groups of singers adjust their vocal tract configuration during their specific singing genre may help to identify risky vocal behavior and provide a basis for prevention of voice disorders.


2018 ◽  
Vol 1 (1) ◽  
pp. 78-94
Author(s):  
I. A. Obukhov ◽  
◽  
G. G. Gorokh ◽  
A. A. Lozovenko ◽  
E. A. Smirnova ◽  
...  
Keyword(s):  

2013 ◽  
Author(s):  
Timothy K. Stanton ◽  
J. M. Jech ◽  
Roger C. Gauss

2011 ◽  
Author(s):  
Timothy K. Stanton ◽  
J. M. Jech ◽  
Roger C. Gauss

2015 ◽  
Vol 9 (1) ◽  
pp. 170-174 ◽  
Author(s):  
Xiaoling Zhang ◽  
Qingduan Meng ◽  
Liwen Zhang

The square checkerboard buckling deformation appearing in indium antimonide infrared focal-plane arrays (InSb IRFPAs) subjected to the thermal shock tests, results in the fracturing of the InSb chip, which restricts its final yield. In light of the proposed three-dimensional modeling, we proposed the method of thinning a silicon readout integrated circuit (ROIC) to level the uneven top surface of InSb IRFPAs. Simulation results show that when the silicon ROIC is thinned from 300 μm to 20 μm, the maximal displacement in the InSb IRFPAs linearly decreases from 7.115 μm to 0.670 μm in the upward direction, and also decreases linearly from 14.013 μm to 1.612 μm in the downward direction. Once the thickness of the silicon ROIC is less than 50 μm, the square checkerboard buckling deformation distribution presenting in the thicker InSb IRFPAs disappears, and the top surface of the InSb IRFPAs becomes flat. All these findings imply that the thickness of the silicon ROIC determines the degree of deformation in the InSb IRFPAs under a thermal shock test, that the method of thinning a silicon ROIC is suitable for decreasing the fracture probability of the InSb chip, and that this approach improves the reliability of InSb IRFPAs.


Author(s):  
S. S. Borges ◽  
R. Barbieri ◽  
P. S. B. Zdanski

The objective of this work is to present, by means of experimental, analytical and numerical techniques that sound pressure level generated by radial-bladed centrifugal fans of electric motor cooling systems may be expressed by a logarithmical ratio of the peripheral velocity of rotor, volumetric flow and efficiency of the fan. The proposed methodology proved to be efficient and simple in the prediction of generated noise by radial-bladed centrifugal fans of TEFC motors with accuracy of ± 3 dB. In addition, the acoustic resonance mode of the fan cavity were determined by means of numerical simulations, which its results were validated through experiments using waterfall spectrum.


Sign in / Sign up

Export Citation Format

Share Document