Assessment of Tongue Position and Laryngeal Height in Two Professional Voice Populations

2020 ◽  
Vol 63 (1) ◽  
pp. 109-124
Author(s):  
Carly Jo Hosbach-Cannon ◽  
Soren Y. Lowell ◽  
Raymond H. Colton ◽  
Richard T. Kelley ◽  
Xue Bao

Purpose To advance our current knowledge of singer physiology by using ultrasonography in combination with acoustic measures to compare physiological differences between musical theater (MT) and opera (OP) singers under controlled phonation conditions. Primary objectives addressed in this study were (a) to determine if differences in hyolaryngeal and vocal fold contact dynamics occur between two professional voice populations (MT and OP) during singing tasks and (b) to determine if differences occur between MT and OP singers in oral configuration and associated acoustic resonance during singing tasks. Method Twenty-one singers (10 MT and 11 OP) were included. All participants were currently enrolled in a music program. Experimental procedures consisted of sustained phonation on the vowels /i/ and /ɑ/ during both a low-pitch task and a high-pitch task. Measures of hyolaryngeal elevation, tongue height, and tongue advancement were assessed using ultrasonography. Vocal fold contact dynamics were measured using electroglottography. Simultaneous acoustic recordings were obtained during all ultrasonography procedures for analysis of the first two formant frequencies. Results Significant oral configuration differences, reflected by measures of tongue height and tongue advancement, were seen between groups. Measures of acoustic resonance also showed significant differences between groups during specific tasks. Both singer groups significantly raised their hyoid position when singing high-pitched vowels, but hyoid elevation was not statistically different between groups. Likewise, vocal fold contact dynamics did not significantly differentiate the two singer groups. Conclusions These findings suggest that, under controlled phonation conditions, MT singers alter their oral configuration and achieve differing resultant formants as compared with OP singers. Because singers are at a high risk of developing a voice disorder, understanding how these two groups of singers adjust their vocal tract configuration during their specific singing genre may help to identify risky vocal behavior and provide a basis for prevention of voice disorders.

2016 ◽  
Vol 102 (2) ◽  
pp. 209-213 ◽  
Author(s):  
Rosario Signorello ◽  
Zhaoyan Zhang ◽  
Bruce Gerratt ◽  
Jody Kreiman

1980 ◽  
Vol 23 (3) ◽  
pp. 495-510 ◽  
Author(s):  
Ingo R. Titze

The myoelastic-aerodynamic theory of phonation has been quantified and tested with mathematical models. The models suggest that vocal fold oscillation is produced as a result of asymmetric forcing functions over closing and opening portions of the glottal cycle. For nearly uniform tissue displacements, as in falsetto voice, the asymmetry in the driving forces can result from the inertia of the air moving through the glottis. This inertia can in turn be enhanced or suppressed by supraglottal or subglottal vocal tract coupling. More obvious and pronounced asymmetries in the driving forces are associated with non-uniform vocal fold tissue displacements. These are combinations of normal tissue modes, and can result in vertical and horizontal phase differences along the surfaces, as observed in chest voice. The ranges of oscillation increase among various models as more freedom in the simulated tissue movement is incorporated. Of particular significance in initiating and maintaining oscillation are the vertical motions that facilitate coupling of aerodynamic energy into the tissues and allow tissue deformations under conditions of incompressibility. Vertical displacements also can have a significant effect on vocal tract excitation. Control of fundamental frequency of oscillation (FO) is basically myoelastic, partially as a result of deliberate or reflex adjustments of laryngeal muscles, and partially as a result of nonlinear tissue strain over the vibrational cycle. This places limits on the control of FO by subglottal pressure, and forces such control to be inseparably connected with vibrational amplitude, or less directly, with vocal intensity.


CoDAS ◽  
2015 ◽  
Vol 27 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Anna Alice Figueirêdo de Almeida ◽  
Luana Ramos Fernandes ◽  
Elma Heitmann Mares Azevedo ◽  
Renata Serrano de Andrade Pinheiro ◽  
Leonardo Wanderley Lopes

Purpose: To examine the voice and personality characteristics of patients diagnosed with organic dysphonia secondary to vocal fold immobility. Methods: The study comprised patients of both genders, attending the Clinic School of Speech Therapy of the Federal University of Paraíba, with otorhinolaryngological diagnosis of vocal fold immobility and speech therapy diagnosis of dysphonia. The self-assessment of voice was measured through a Vocal Screening Protocol and Voice Symptoms Scale (VoiSS), the voice was collected for auditory-perceptive evaluation, and the Factorial Personality Battery (FPB) was used. Descriptive statistical analysis was performed to determine the frequency, mean, and standard deviation of the studied variables. Results: Eight patients participated in the study, of both genders, with average age of 40.4±16.9 years. The more frequent risk factors were the personal ones (4.7±2.1). In the VoiSS, the patients presented a higher average in the limitation score (34.1±15.7). From the auditory-perceptive evaluation, moderate intensity of vocal deviation was obtained, with predominant vocal roughness (57.7±25.2). In the FPB, the patients had an average higher than the cutoff scores in neuroticism (3.8±1.4) and accomplishment (5.2±1.0). Conclusion: The predominant vocal parameter was roughness. The patients referred to a few risk factors that compromise the vocal behavior and presented the neuroticism and realization factors as a highlight in their personality. Thus, individuals with vocal fold immobility show personality characteristics that may be a reflection of their voice disorder, not a factor that determines their dysphonia.


2002 ◽  
Vol 111 (6) ◽  
pp. 537-541 ◽  
Author(s):  
Tzu-Yu Hsiao ◽  
Chia-Ming Liu ◽  
Kai-Nan Lin

The mucus layer on the vocal folds was examined by videostrobolaryngoscopy in patients with laryngeal tension-fatigue syndrome, a chronic functional dysphonia due to vocal abuse and misuse. Besides the findings in previous reports (such as abnormal glottal closure, phase or amplitude asymmetry, and the irregular mucosal wave), the vocal folds during vibration had an uneven mucus surface. The occurrence of an uneven mucus layer on vocal folds was significantly greater in subjects with this voice disorder (83% or 250 of 301 patients in this series) than in those without voice disorders (18.5% or 5 of 27). The increase of mucus viscosity, mucus aggregation, and the formation of rough surfaces on the vocal folds alter the mechanical properties that contribute to vibration of the cover of the vocal folds, and thereby worsen the symptoms of dysphonia in patients with laryngeal tension-fatigue syndrome.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Khaled Daqrouq ◽  
Abdel-Rahman Al-Qawasmi ◽  
Ahmed Balamesh ◽  
Ali S. Alghamdi ◽  
Mohamed A. Al-Amoudi

Speech parameters may include perturbation measurements, spectral and cepstral modeling, and pathological effects of some diseases, like influenza, that affect the vocal tract. The verification task is a very good process to discriminate between different types of voice disorder. This study investigated the modeling of influenza’s pathological effects on the speech signals of the Arabic vowels “A” and “O.” For feature extraction, linear prediction coding (LPC) of discrete wavelet transform (DWT) subsignals denoted by LPCW was used. k-Nearest neighbor (KNN) and support vector machine (SVM) classifiers were used for classification. To study the pathological effects of influenza on the vowel “A” and vowel “O,” power spectral density (PSD) and spectrogram were illustrated, where the PSD of “A” and “O” was repressed as a result of the pathological effects. The obtained results showed that the verification parameters achieved for the vowel “A” were better than those for vowel “O” for both KNN and SVM for an average. The receiver operating characteristic curve was used for interpretation. The modeling by the speech utterances as words was also investigated. We can claim that the speech utterances as words could model the influenza disease with a good quality of the verification parameters with slightly less performance than the vowels “A” as speech utterances. A comparison with state-of-the-art method was made. The best results were achieved by the LPCW method.


2019 ◽  
Vol 244 (10) ◽  
pp. 824-833 ◽  
Author(s):  
Ho-Ryun Won ◽  
Eun Hye Song ◽  
Jong Eun Won ◽  
Hye Young Lee ◽  
Sung Un Kang ◽  
...  

Injection laryngoplasty is a widely used therapeutic option for drug delivery into vocal folds (VFs). Efficient injectable materials are urgently needed for treating intractable VF disease. Liquid-type non-thermal atmospheric plasma (LTP) has been found to be useful for various biological applications, including in regenerative medicine. We evaluated the effects of LTP on VF regeneration. Migration and matrix metalloproteinase-2 expression of lipopolysaccharide (LPS)-treated human vocal fold-derived mesenchymal stem cells (VF-MSCs) were enhanced by LTP treatment. LTP treatment not only ameliorated nuclear factor-κB and interleukin-6 activation, induced by LPS treatment, but also the increased manifestation of α-smooth muscle actin and fibronectin, induced by transforming growth factor-ß. In a rabbit VF scarring animal model, histological analyses showed increased hyaluronic acid deposition and decreased collagen accumulation after LTP injection. Videokymographic analysis showed more improved vibrations in LTP-treated VF mucosa compared to those in non-treated group. In conclusion, LTP treatment enhanced the recruitment and activation of VF-MSCs. Regulated extracellular matrix (ECM) synthesis and eventual functional improvement of scarred VFs were observed upon LTP treatment. The results of this study suggest that LTP injection can enhance wound healing and improve functional remodeling following VF injury. Impact statement Voice disorder has a significant impact on life quality, and one of the major causes of this voice disorder is vocal fold scarring. Therefore, various approaches have been tried to treat for voice disorder. However, no method has satisfied all requirements until now. Plasma medicine, which involves the medical application of plasma, is a rapidly developing field. We have confirmed that liquid-type plasma improved vocal fold scarring by mobilizing and activating vocal fold fibroblast. In conclusion, liquid-type plasma is a potential therapeutic agent for promoting vocal fold scarring through simple injection and it may be an alternative therapeutic agent for the current situation to treat voice disorder.


Author(s):  
Byron D. Erath ◽  
Matías Zañartu ◽  
Sean D. Peterson ◽  
Michael W. Plesniak

Voiced speech is initiated as air is expelled from the lungs and passes through the vocal tract inciting self-sustained oscillations of the vocal folds. While various approaches exist for investigating both normal and pathological speech, the relative inaccessibility of the vocal folds make multi-mass speech models an attractive alternative. Their behavior has been benchmarked with excised larynx experiments, and they have been used as analysis tools for both normal and disordered speech, including investigations of paralysis, vocal tremor, and breathiness. However, during pathological speech, vocal fold motion is often unstructured, resulting in chaotic motion and a wealth of nonlinear phenomena. Unfortunately, current methodologies for multi-mass speech models are unable to replicate the nonlinear vocal fold behavior that often occurs in physiological diseased voice for realistic values of subglottal pressure.


2004 ◽  
Author(s):  
Michael Barry

The design and testing of an experimental apparatus for in vitro study of phonatory aerodynamics (voice production) in humans is presented. The presentation includes not only the details of apparatus design, but flow visualization and Digital Particle Image Velocimetry (DPIV) measurements of the developing flow that occurs during the opening of the constriction from complete closure. The main features of the phonation process have long been understood. A proper combination of air flow from the lungs and of vocal fold tension initiates a vibration of the vocal folds, which in turn valves the airflow. The resulting periodic acceleration of the airstream through the glottis excites the acoustic modes of the vocal tract. It is further understood that the pressure gradient driving glottal flow is related to flow separation on the downstream side of the vocal folds. However, the details of this process and how it may contribute to effects such as aperiodicity of the voice and energy losses in voiced sound production are still not fully grasped. The experimental apparatus described in this paper is designed to address these issues. The apparatus itself consists of a scaled-up duct in which water flows through a constriction whose width is modulated by motion of the duct wall in a manner mimicking vocal fold vibration. Scaling the duct up 10 times and using water as the working fluid allows temporally and spatially resolved measurements of the dynamically similar flow velocity field using DPIV at video standard framing rates (15Hz). Dynamic similarity is ensured by matching the Reynolds number (based on glottal flow speed and glottis width) of 8000, and by varying the Strouhal number (based on vocal fold length, glottal flow speed, and a time scale characterizing the motion of the vocal folds) ranging from 0.01 to 0.1. The walls of the 28 cm × 28 cm test section and the vocal fold pieces are made of clear cast acrylic to allow optical access. The vocal fold pieces are 12.7 cm × 14 cm × 28 cm and are rectangular in shape, except for the surfaces which form the glottis, which are 6.35 cm radius half-circles. Dye injection slots are placed on the upstream side of both vocal field pieces to allow flow visualization. Prescribed motion of the vocal folds is provided by two linear stages. Linear bearings ensure smooth execution of the motion prescribed using a computer interface. Measurements described here use the Laser-Induced Fluorescence (LIF) flow visualization and DPIV techniques and are performed for two Strouhal numbers to assess the effect of opening time on the development of the glottal jet. These measurements are conducted on a plane oriented perpendicular to the glottis, at the duct midplane. LIF measurements use a 5W Argon ion laser to produce a light sheet, which illuminates the dye injected through a slot in each vocal fold piece. Two dye colors are used, one for each side. Quantitative information about the velocity and vorticity fields are obtained through DPIV measurements at the same location as the LIF measurements.


Author(s):  
Johan Sundberg

The function of the voice organ is basically the same in classical singing as in speech. However, loud orchestral accompaniment has necessitated the use of the voice in an economical way. As a consequence, the vowel sounds tend to deviate considerably from those in speech. Male voices cluster formant three, four, and five, so that a marked peak is produced in spectrum envelope near 3,000 Hz. This helps them to get heard through a loud orchestral accompaniment. They seem to achieve this effect by widening the lower pharynx, which makes the vowels more centralized than in speech. Singers often sing at fundamental frequencies higher than the normal first formant frequency of the vowel in the lyrics. In such cases they raise the first formant frequency so that it gets somewhat higher than the fundamental frequency. This is achieved by reducing the degree of vocal tract constriction or by widening the lip and jaw openings, constricting the vocal tract in the pharyngeal end and widening it in the mouth. These deviations from speech cause difficulties in vowel identification, particularly at high fundamental frequencies. Actually, vowel identification is almost impossible above 700 Hz (pitch F5). Another great difference between vocal sound produced in speech and the classical singing tradition concerns female voices, which need to reduce the timbral differences between voice registers. Females normally speak in modal or chest register, and the transition to falsetto tends to happen somewhere above 350 Hz. The great timbral differences between these registers are avoided by establishing control over the register function, that is, over the vocal fold vibration characteristics, so that seamless transitions are achieved. In many other respects, there are more or less close similarities between speech and singing. Thus, marking phrase structure, emphasizing important events, and emotional coloring are common principles, which may make vocal artists deviate considerably from the score’s nominal description of fundamental frequency and syllable duration.


Sign in / Sign up

Export Citation Format

Share Document