A AHP(analytic hierarchy process) strategic decision model study of Chinese retail industry green supply chain

Author(s):  
Yan Li ◽  
Ruili Sha ◽  
Luyi Li ◽  
Jing Wang
Author(s):  
Rodrigo Barbosa de Santis ◽  
Leonardo Golliat ◽  
Eduardo Pestana de Aguiar

The supplier selection problem has been discussed in literature within the supply chain management subject and it is extremely important due to its impact on the entire supply chain configuration, strategy and performance. This work presents a decision model based on the fuzzy analytic hierarchy process method and its application in a real case of maintenance supplier selection in a large Brazilian railway operator. Eight criteria were adopted - technical capacity, financial status, relationship, operations management, security management, infrastructure, historic performance and costs - for evaluating five potential suppliers. In the case study, both first and second ranked suppliers by the method have been selected by the company for providing the services and the model was adopted as a standard procedure within the organization for contracts over US$ 300,000.


2014 ◽  
Vol 5 (1) ◽  
pp. 52-75 ◽  
Author(s):  
Yasanur Kayikci ◽  
Volker Stix ◽  
Larry J. LeBlanc ◽  
Michael R. Bartolacci

This research studies heterarchical collaboration in logistical transport. Specifically, it utilizes a hybrid Delphi-Analytic Hierarchy Process (AHP) approach to explore the relevant criteria for the formation and maintenance of a strategic alignment for heterarchical transport collaboration. The importance of this work is that it applies a novel hybrid approach for identifying criteria for success to a little-studied form of supply chain collaboration: heterarchical collaborative transport. The criteria for this form of collaboration identified by the application of Delphi-AHP include ones from the technical, risk, financial, organizational, and operational categories. This novel application of the hybrid approach leveraged the expertise of transportation collaboration experts from the U.K., France, Canada, Sweden, the Netherlands, and Italy to identify key criteria for a strategic alignment between heterarchical collaboration partners. Such collaborative initiatives are important in industry as an environmentally conscious, yet efficient and effective strategy for the transport of raw materials and finished products in the supply chain.


Author(s):  
Sotiris A. Papantonopoulos ◽  
Gavriel Salvendy

Cognitive task allocation employs task analysis to identify the performance and operational requirements of task functions; and demand/resource matching to match the identified requirements and the human and computer resources available for implementation. The current methodologies of cognitive task allocation are either too aggregate to provide adequate resolution of performance requirements or domain-specific and thus of limited applicability. The paper introduces a formal, quantitative, and domain-independent model of cognitive task allocation aimed at reducing the limitations inherent in the currently practiced methodologies. Demand/resource matching is modeled as an Analytic Hierarchy Process. The Analytic Hierarchy Process of Demand/Resource Matching is defined as a mapping process along a four-level Analytic Hierarchy. By means of the Analytic Hierarchy Process, a task function (Level 1 of the Analytic Hierarchy) is analyzed into its cognitive processes (Level 2); performance criteria are set for each cognitive process (Level 3) by means of which the capacities of the human, computer, or interactive human/computer controller (Level 4) are evaluated and compared. The Analytic Hierarchy Process then integrates judgements of human and computer abilities and limitations into a weighted average indicating the relative capacity of human and computer to perform this function. This assessment of relative merit of performance can hence be integrated with work design, economic, and other contextual factors towards the final allocation design. The Analytic Hierarchy Process was applied and evaluated in the design of task allocation in production planing and control of a flexible manufacturing system by comparing the allocation designs of two groups of subjects. One group was supported by the decision model, the other received no decision support. The observed differences between the two groups indicated that the decision model can effectively support detailed task analysis and an adequate resolution of performance requirements; the identification of the design, trade-offs between human allocation and automation; and provide the computational resources to reduce decision bias.


Sign in / Sign up

Export Citation Format

Share Document