Machine learning based Pedantic Analysis of Predictive Algorithms in Crop Yield Management

Author(s):  
M Chandraprabha ◽  
Rajesh Kumar Dhanaraj
2021 ◽  
Vol 11 (4) ◽  
pp. 1742
Author(s):  
Ignacio Rodríguez-Rodríguez ◽  
José-Víctor Rodríguez ◽  
Wai Lok Woo ◽  
Bo Wei ◽  
Domingo-Javier Pardo-Quiles

Type 1 diabetes mellitus (DM1) is a metabolic disease derived from falls in pancreatic insulin production resulting in chronic hyperglycemia. DM1 subjects usually have to undertake a number of assessments of blood glucose levels every day, employing capillary glucometers for the monitoring of blood glucose dynamics. In recent years, advances in technology have allowed for the creation of revolutionary biosensors and continuous glucose monitoring (CGM) techniques. This has enabled the monitoring of a subject’s blood glucose level in real time. On the other hand, few attempts have been made to apply machine learning techniques to predicting glycaemia levels, but dealing with a database containing such a high level of variables is problematic. In this sense, to the best of the authors’ knowledge, the issues of proper feature selection (FS)—the stage before applying predictive algorithms—have not been subject to in-depth discussion and comparison in past research when it comes to forecasting glycaemia. Therefore, in order to assess how a proper FS stage could improve the accuracy of the glycaemia forecasted, this work has developed six FS techniques alongside four predictive algorithms, applying them to a full dataset of biomedical features related to glycaemia. These were harvested through a wide-ranging passive monitoring process involving 25 patients with DM1 in practical real-life scenarios. From the obtained results, we affirm that Random Forest (RF) as both predictive algorithm and FS strategy offers the best average performance (Root Median Square Error, RMSE = 18.54 mg/dL) throughout the 12 considered predictive horizons (up to 60 min in steps of 5 min), showing Support Vector Machines (SVM) to have the best accuracy as a forecasting algorithm when considering, in turn, the average of the six FS techniques applied (RMSE = 20.58 mg/dL).


Author(s):  
Janmejay Pant ◽  
R.P. Pant ◽  
Manoj Kumar Singh ◽  
Devesh Pratap Singh ◽  
Himanshu Pant

2019 ◽  
Vol 32 (4) ◽  
pp. 119-136
Author(s):  
Bilel Benbouzid

Predictive policing is a research field whose principal aim is to develop machines for predicting crimes, drawing on machine learning algorithms and the growing availability of a diversity of data. This paper deals with the case of the algorithm of PredPol, the best-known startup in predictive policing. The mathematicians behind it took their inspiration from an algorithm created by a French seismologist, a professor in earth sciences at the University of Savoie. As the source code of the PredPol platform is kept inaccessible as a trade secret, the author contacted the seismologist directly in order to try to understand the predictions of the company’s algorithm. Using the same method of calculation on the same data, the seismologist arrived at a different, more cautious interpretation of the algorithm's capacity to predict crime. How were these predictive analyses formed on the two sides of the Atlantic? How do predictive algorithms come to exist differently in these different contexts? How and why is it that predictive machines can foretell a crime that is yet to be committed in a California laboratory, and yet no longer work in another laboratory in Chambéry?  In answering these questions, I found that machine learning researchers have a moral vision of their own activity that can be understood by analyzing the values and material consequences involved in the evaluation tests that are used to create the predictions.


2019 ◽  
Author(s):  
Anthony Tabet ◽  
Thomas Gebhart ◽  
Guanglu Wu ◽  
Charlie Readman ◽  
Merrick Pierson Smela ◽  
...  

DFT, NMR, ITC, and cell confluence data are used to generate predictive algorithms of supramolecular binding to cucurbit[7]uril and experimentally validate these predictions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javad Ansarifar ◽  
Lizhi Wang ◽  
Sotirios V. Archontoulis

AbstractCrop yield prediction is crucial for global food security yet notoriously challenging due to multitudinous factors that jointly determine the yield, including genotype, environment, management, and their complex interactions. Integrating the power of optimization, machine learning, and agronomic insight, we present a new predictive model (referred to as the interaction regression model) for crop yield prediction, which has three salient properties. First, it achieved a relative root mean square error of 8% or less in three Midwest states (Illinois, Indiana, and Iowa) in the US for both corn and soybean yield prediction, outperforming state-of-the-art machine learning algorithms. Second, it identified about a dozen environment by management interactions for corn and soybean yield, some of which are consistent with conventional agronomic knowledge whereas some others interactions require additional analysis or experiment to prove or disprove. Third, it quantitatively dissected crop yield into contributions from weather, soil, management, and their interactions, allowing agronomists to pinpoint the factors that favorably or unfavorably affect the yield of a given location under a given weather and management scenario. The most significant contribution of the new prediction model is its capability to produce accurate prediction and explainable insights simultaneously. This was achieved by training the algorithm to select features and interactions that are spatially and temporally robust to balance prediction accuracy for the training data and generalizability to the test data.


2019 ◽  
Vol 12 (1) ◽  
pp. 21 ◽  
Author(s):  
Liangliang Zhang ◽  
Zhao Zhang ◽  
Yuchuan Luo ◽  
Juan Cao ◽  
Fulu Tao

Maize is an extremely important grain crop, and the demand has increased sharply throughout the world. China contributes nearly one-fifth of the total production alone with its decreasing arable land. Timely and accurate prediction of maize yield in China is critical for ensuring global food security. Previous studies primarily used either visible or near-infrared (NIR) based vegetation indices (VIs), or climate data, or both to predict crop yield. However, other satellite data from different spectral bands have been underutilized, which contain unique information on crop growth and yield. In addition, although a joint application of multi-source data significantly improves crop yield prediction, the combinations of input variables that could achieve the best results have not been well investigated. Here we integrated optical, fluorescence, thermal satellite, and environmental data to predict county-level maize yield across four agro-ecological zones (AEZs) in China using a regression-based method (LASSO), two machine learning (ML) methods (RF and XGBoost), and deep learning (DL) network (LSTM). The results showed that combining multi-source data explained more than 75% of yield variation. Satellite data at the silking stage contributed more information than other variables, and solar-induced chlorophyll fluorescence (SIF) had an almost equivalent performance with the enhanced vegetation index (EVI) largely due to the low signal to noise ratio and coarse spatial resolution. The extremely high temperature and vapor pressure deficit during the reproductive period were the most important climate variables affecting maize production in China. Soil properties and management factors contained extra information on crop growth conditions that cannot be fully captured by satellite and climate data. We found that ML and DL approaches definitely outperformed regression-based methods, and ML had more computational efficiency and easier generalizations relative to DL. Our study is an important effort to combine multi-source remote sensed and environmental data for large-scale yield prediction. The proposed methodology provides a paradigm for other crop yield predictions and in other regions.


2019 ◽  
Vol 20 (5) ◽  
pp. 1015-1029 ◽  
Author(s):  
Patrick Filippi ◽  
Edward J. Jones ◽  
Niranjan S. Wimalathunge ◽  
Pallegedara D. S. N. Somarathna ◽  
Liana E. Pozza ◽  
...  

Author(s):  
Fatin Farhan Haque ◽  
Ahmed Abdelgawad ◽  
Venkata Prasanth Yanambaka ◽  
Kumar Yelamarthi

Sign in / Sign up

Export Citation Format

Share Document