Analysis of agricultural crop yield prediction using statistical techniques of machine learning

Author(s):  
Janmejay Pant ◽  
R.P. Pant ◽  
Manoj Kumar Singh ◽  
Devesh Pratap Singh ◽  
Himanshu Pant
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javad Ansarifar ◽  
Lizhi Wang ◽  
Sotirios V. Archontoulis

AbstractCrop yield prediction is crucial for global food security yet notoriously challenging due to multitudinous factors that jointly determine the yield, including genotype, environment, management, and their complex interactions. Integrating the power of optimization, machine learning, and agronomic insight, we present a new predictive model (referred to as the interaction regression model) for crop yield prediction, which has three salient properties. First, it achieved a relative root mean square error of 8% or less in three Midwest states (Illinois, Indiana, and Iowa) in the US for both corn and soybean yield prediction, outperforming state-of-the-art machine learning algorithms. Second, it identified about a dozen environment by management interactions for corn and soybean yield, some of which are consistent with conventional agronomic knowledge whereas some others interactions require additional analysis or experiment to prove or disprove. Third, it quantitatively dissected crop yield into contributions from weather, soil, management, and their interactions, allowing agronomists to pinpoint the factors that favorably or unfavorably affect the yield of a given location under a given weather and management scenario. The most significant contribution of the new prediction model is its capability to produce accurate prediction and explainable insights simultaneously. This was achieved by training the algorithm to select features and interactions that are spatially and temporally robust to balance prediction accuracy for the training data and generalizability to the test data.


2019 ◽  
Vol 12 (1) ◽  
pp. 21 ◽  
Author(s):  
Liangliang Zhang ◽  
Zhao Zhang ◽  
Yuchuan Luo ◽  
Juan Cao ◽  
Fulu Tao

Maize is an extremely important grain crop, and the demand has increased sharply throughout the world. China contributes nearly one-fifth of the total production alone with its decreasing arable land. Timely and accurate prediction of maize yield in China is critical for ensuring global food security. Previous studies primarily used either visible or near-infrared (NIR) based vegetation indices (VIs), or climate data, or both to predict crop yield. However, other satellite data from different spectral bands have been underutilized, which contain unique information on crop growth and yield. In addition, although a joint application of multi-source data significantly improves crop yield prediction, the combinations of input variables that could achieve the best results have not been well investigated. Here we integrated optical, fluorescence, thermal satellite, and environmental data to predict county-level maize yield across four agro-ecological zones (AEZs) in China using a regression-based method (LASSO), two machine learning (ML) methods (RF and XGBoost), and deep learning (DL) network (LSTM). The results showed that combining multi-source data explained more than 75% of yield variation. Satellite data at the silking stage contributed more information than other variables, and solar-induced chlorophyll fluorescence (SIF) had an almost equivalent performance with the enhanced vegetation index (EVI) largely due to the low signal to noise ratio and coarse spatial resolution. The extremely high temperature and vapor pressure deficit during the reproductive period were the most important climate variables affecting maize production in China. Soil properties and management factors contained extra information on crop growth conditions that cannot be fully captured by satellite and climate data. We found that ML and DL approaches definitely outperformed regression-based methods, and ML had more computational efficiency and easier generalizations relative to DL. Our study is an important effort to combine multi-source remote sensed and environmental data for large-scale yield prediction. The proposed methodology provides a paradigm for other crop yield predictions and in other regions.


2020 ◽  
Vol 284 ◽  
pp. 107886 ◽  
Author(s):  
Raí A. Schwalbert ◽  
Telmo Amado ◽  
Geomar Corassa ◽  
Luan Pierre Pott ◽  
P.V.Vara Prasad ◽  
...  

2010 ◽  
Vol 2 (3) ◽  
pp. 673-696 ◽  
Author(s):  
Sudhanshu Sekhar Panda ◽  
Daniel P. Ames ◽  
Suranjan Panigrahi

2021 ◽  
Author(s):  
Amit Kumar Srivast ◽  
Nima Safaei ◽  
Saeed Khaki ◽  
Gina Lopez ◽  
Wenzhi Zeng ◽  
...  

Abstract Crop yield forecasting depends on many interactive factors including crop genotype, weather, soil, and management practices. This study analyzes the performance of machine learning and deep learning methods for winter wheat yield prediction using extensive datasets of weather, soil, and crop phenology. We propose a convolutional neural network (CNN) which uses the 1-dimentional convolution operation to capture the time dependencies of environmental variables. The proposed CNN, evaluated along with other machine learning models for winter wheat yield prediction in Germany, outperformed all other models tested. To address the seasonality, weekly features were used that explicitly take soil moisture and meteorological events into account. Our results indicated that nonlinear models such as deep learning models and XGboost are more effective in finding the functional relationship between the crop yield and input data compared to linear models and deep neural networks had a higher prediction accuracy than XGboost. One of the main limitations of machine learning models is their black box property. Therefore, we moved beyond prediction and performed feature selection, as it provides key results towards explaining yield prediction (variable importance by time). As such, our study indicates which variables have the most significant effect on winter wheat yield.


2021 ◽  
Vol 13 (18) ◽  
pp. 3760
Author(s):  
Linghua Meng ◽  
Huanjun Liu ◽  
Susan L. Ustin ◽  
Xinle Zhang

Timely and reliable maize yield prediction is essential for the agricultural supply chain and food security. Previous studies using either climate or satellite data or both to build empirical or statistical models have prevailed for decades. However, to what extent climate and satellite data can improve yield prediction is still unknown. In addition, fertilizer information may also improve crop yield prediction, especially in regions with different fertilizer systems, such as cover crop, mineral fertilizer, or compost. Machine learning (ML) has been widely and successfully applied in crop yield prediction. Here, we attempted to predict maize yield from 1994 to 2007 at the plot scale by integrating multi-source data, including monthly climate data, satellite data (i.e., vegetation indices (VIs)), fertilizer data, and soil data to explore the accuracy of different inputs to yield prediction. The results show that incorporating all of the datasets using random forests (RF) and AB (adaptive boosting) can achieve better performances in yield prediction (R2: 0.85~0.98). In addition, the combination of VIs, climate data, and soil data (VCS) can predict maize yield more effectively than other combinations (e.g., combinations of all data and combinations of VIs and soil data). Furthermore, we also found that including different fertilizer systems had different prediction accuracies. This paper aggregates data from multiple sources and distinguishes the effects of different fertilization scenarios on crop yield predictions. In addition, the effects of different data on crop yield were analyzed in this study. Our study provides a paradigm that can be used to improve yield predictions for other crops and is an important effort that combines multi-source remotely sensed and environmental data for maize yield prediction at the plot scale and develops timely and robust methods for maize yield prediction grown under different fertilizing systems.


India has always been active in agriculture, in fact even in this age of industrialization agriculture and agriculturebased industries continue to be a main source of income for a large percentage of the population. Machine learning and data mining have become, in the present day, are very important mediums when it comes to research in the crop yielding domain. Many a times we come across news on the paper about farmers committing suicide because of crop failures and increase in loans. In preventing such situations, crop yield prediction software can play a very important role. This research is an attempt in proposing a method to predict the success of crop for a particular area by using data on amounts and ratios of different components of soil like nitrogen, potassium, phosphorus and environmental statistics on temperature and weather. Various machine learning algorithms are used to get an accurate result. KNN is used for classification and regression prediction problem. It also attempts in providing a precise output on what fertilizers can be used to better the yield. Through this, therefore, farmers will also be able to predict their profits and final revenues.


Author(s):  
C. K. Srinivas

Crop yield prediction is an application that helps farmers to improve crop yield. As selection of every crop is very important in agricultural planning, it mainly depends on market price, climate and production rate. The proposed project predicts the crop yield quantity, based on the following factors Temperature, Humidity, Moisture level of soil and area of field. The rate of yield predicted by our proposed project is displayed as an output to the user that aids the farmer to harvest the crop.


Machine learning Has performed a essential position within the estimation of crop yield for both farmers and consumers of the products. Machine learning techniques learn from data set related to the environment on which the estimations and estimation are to be made and the outcome of the learning process are used by farmers for corrective measures for yield optimization. This paper we explore various ML techniques utilized in crop yield estimation and provide the detailed analysis of accuracy of the techniques.


Sign in / Sign up

Export Citation Format

Share Document