Training Unity Machine Learning Agents using reinforcement learning method

Author(s):  
Marat Urmanov ◽  
Madina Alimanova ◽  
Askar Nurkey
Author(s):  
Daisuke Kitakoshi ◽  
◽  
Hiroyuki Shioya ◽  
Masahito Kurihara ◽  

Reinforcement learning (RL) is a kind of machine learning. It aims to optimize agents’ policies by adapting the agents to an environment according to rewards. In this paper, we propose a method for improving policies by using stochastic knowledge, in which reinforcement learning agents obtain. We use a Bayesian Network (BN), which is a stochastic model, as knowledge of an agent. Its structure is decided by minimum description length criterion using series of an agent’s input-output and rewards as sample data. A BN constructed in our study represents stochastic dependences between input-output and rewards. In our proposed method, policies are improved by supervised learning using the structure of BN (i.e. stochastic knowledge). The proposed improvement mechanism makes RL agents acquire more effective policies. We carry out simulations in the pursuit problem in order to show the effectiveness of our proposed method.


Author(s):  
Maria V. Stepanova ◽  
◽  
Oleg I. Eremin ◽  

The article describes issues of applying an adaptive approach based on reinforcement learning for assignment of the computing tasks to nodes of distributed Internet of Things (IoT) platform. The IoT platform consists of heterogeneous elements that are computing nodes. Classical approaches, methods, and algorithms for distributed and parallel systems are not suitable for task assignment in IoT systems due to its characteristics. The reinforcement learning method allows you to solve the problem of building a distributed system due to the adaptive formation of a sequence of computational nodes and the corresponding computational tasks. Thus, the article represents a method that makes IoT nodes capable of execution computing tasks, especially, which were previously designed for classical distributed and parallel systems.


Author(s):  
Antonio Serrano-Muñoz ◽  
Nestor Arana-Arexolaleiba ◽  
Dimitrios Chrysostomou ◽  
Simon Bøgh

AbstractRemanufacturing automation must be designed to be flexible and robust enough to overcome the uncertainties, conditions of the products, and complexities in the planning and operation of the processes. Machine learning methods, in particular reinforcement learning, are presented as techniques to learn, improve, and generalise the automation of many robotic manipulation tasks (most of them related to grasping, picking, or assembly). However, not much has been exploited in remanufacturing, in particular in disassembly tasks. This work presents the state of the art of contact-rich disassembly using reinforcement learning algorithms and a study about the generalisation of object extraction skills when applied to contact-rich disassembly tasks. The generalisation capabilities of two state-of-the-art reinforcement learning agents (trained in simulation) are tested and evaluated in simulation, and real world while perform a disassembly task. Results show that at least one of the agents can generalise the contact-rich extraction skill. Besides, this work identifies key concepts and gaps for the reinforcement learning algorithms’ research and application on disassembly tasks.


2021 ◽  
Author(s):  
Antonio Serrano Muñoz ◽  
Nestor Arana-Arexolaleiba ◽  
Dimitrios Chrysostomou ◽  
Simon Bøgh

Abstract Remanufacturing automation must be designed to be flexible and robust enough to overcome the uncertainties, conditions of the products, and complexities in the process's planning and operation. Machine learning, particularly reinforcement learning, methods are presented as techniques to learn, improve, and generalise the automation of many robotic manipulation tasks (most of them related to grasping, picking, or assembly). However, not much has been exploited in remanufacturing, in particular in disassembly tasks. This work presents the State-of-the-Art of contact-rich disassembly using reinforcement learning algorithms and a study about the object extraction skill's generalisation when applied to contact-rich disassembly tasks. The generalisation capabilities of two State-of-the-Art reinforcement learning agents (trained in simulation) are tested and evaluated in simulation and real-world while perform a disassembly task. Results shows that, at least, one of the agents can generalise the contact-rich extraction skill. Also, this work identifies key concepts and gaps for the reinforcement learning algorithms' research and application on disassembly tasks.


AI Magazine ◽  
2010 ◽  
Vol 31 (2) ◽  
pp. 81 ◽  
Author(s):  
Shimon Whiteson ◽  
Brian Tanner ◽  
Adam White

This article reports on the 2008 Reinforcement Learning Competition,  which began in November 2007 and ended with a workshop at the  International Conference on Machine Learning (ICML) in July 2008 in  Helsinki, Finland.  Researchers from around the world developed  reinforcement learning agents to compete in six problems of various  complexity and difficulty.  The competition employed fundamentally  redesigned evaluation frameworks that, unlike those in previous  competitions, aimed to systematically encourage the submission of  robust learning methods. We describe the unique challenges of  empirical evaluation in reinforcement learning and briefly review  the history of the previous competitions and the evaluation  frameworks they employed.  We also describe the novel frameworks  developed for the 2008 competition as well as the software  infrastructure on which they rely.  Furthermore, we describe the six  competition domains and present a summary of selected competition  results.  Finally, we discuss the implications of these results and  outline ideas for the future of the competition.


2009 ◽  
Vol 129 (7) ◽  
pp. 1253-1263
Author(s):  
Toru Eguchi ◽  
Takaaki Sekiai ◽  
Akihiro Yamada ◽  
Satoru Shimizu ◽  
Masayuki Fukai

2019 ◽  
Author(s):  
Hironori Takemoto ◽  
Tsubasa Goto ◽  
Yuya Hagihara ◽  
Sayaka Hamanaka ◽  
Tatsuya Kitamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document