Compression of ECG signal based on its deviation from a reference signal using discrete cosine transform

Author(s):  
Mohammad Saiful Alam ◽  
Newaz Muhammad Syfur Rahim
Webology ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 519-539
Author(s):  
Aqeel Mohsin Hamad

Cardiovascular disease (CADs) is considered the primary leading cause of death. Irregular activity of heart, these disease can be detected and classified by Electrocardiogram (ECG), which is constructed from using electrodes placed on human skin to record the electrical activity of the heart. Because QRS complex represents the basic part of the ECG signal, these components should be recognized in order to analysis the other characteristics of the signal. Different methods and algorithms are proposed to analysis and processing the ECG signal. In this paper, a new QRS complex recognition method are proposed based on discrete cosine transform (DCT) with variable adaptive threshold method, which is used to determine threshold based on characteristic of each ECG signal to detect upper and lower levels of threshold to detect the peak of the signal. At first, the DCT is applied to the ECG signal to isolate it into different coefficients and eliminate or reduce the noises of the signal based on processing of high frequency components of DCT coefficients, which have less information, then the ECG is reconstructed by cropping the most important coefficients to be used in threshold determination. The basic idea is that the reconstructed signal have high differences between the components of the signal, and this facilitates the process of calculating the threshold value, which is used later to find peaks of ECG signal. The proposed method is tested and its performance are determined based on three different datasets, which are MITBIH Arrhythmia dataset, (LTSTDB) and (EDB) and the performance are evaluated using different metrics, which are Detection rate, accuracy, specificity and sensitivity. The experimental results show that the proposed method is performed or outperformed other works, therefore it can be used in peak detection applications.


Author(s):  
Rahul Dixit ◽  
Amita Nandal ◽  
Arvind Dhaka ◽  
Vardan Agarwal ◽  
Yohan Varghese

Background: Nowadays information security is one of the biggest issues of social networks. The multimedia data can be tampered with, and the attackers can then claim its ownership. Image watermarking is a technique that is used for copyright protection and authentication of multimedia. Objective: We aim to create a new and more robust image watermarking technique to prevent illegal copying, editing and distribution of media. Method : The watermarking technique proposed in this paper is non-blind and employs Lifting Wavelet Transform on the cover image to decompose the image into four coefficient matrices. Then Discrete Cosine Transform is applied which separates a selected coefficient matrix into different frequencies and later Singular Value Decomposition is applied. Singular Value Decomposition is also applied to the watermarking image and it is added to the singular matrix of the cover image which is then normalized followed by the inverse Singular Value Decomposition, inverse Discrete Cosine Transform and inverse Lifting Wavelet Transform respectively to obtain an embedded image. Normalization is proposed as an alternative to the traditional scaling factor. Results: Our technique is tested against attacks like rotation, resizing, cropping, noise addition and filtering. The performance comparison is evaluated based on Peak Signal to Noise Ratio, Structural Similarity Index Measure, and Normalized Cross-Correlation. Conclusion: The experimental results prove that the proposed method performs better than other state-of-the-art techniques and can be used to protect multimedia ownership.


1990 ◽  
Vol 26 (8) ◽  
pp. 503
Author(s):  
S.C. Chan ◽  
K.L. Ho

Sign in / Sign up

Export Citation Format

Share Document