High-Performance Object Recognition by Employing a Transfer Learned Deep Convolutional Neural Network

Author(s):  
Md. Mehedi Hasan ◽  
Azmain Yakin Srizon ◽  
Abu Sayeed ◽  
Md. Al Mehedi Hasan
2019 ◽  
Author(s):  
Nicholas K. DeWind

SummaryHumans and many non-human animals have the “number sense,” an ability to estimate the number of items in a set without counting. This innate sense of number is hypothesized to provide a foundation for more complex numerical and mathematical concepts. Here I investigated whether we also share the number sense with a deep convolutional neural network (DCNN) trained for object recognition. These in silico networks have revolutionized machine learning over the last seven years, allowing computers to reach human-level performance on object recognition tasks for the first time. Their architecture is based on the structure of mammalian visual cortex, and after they are trained, they provide a highly predictive model of responses in primate visual cortex, suggesting deep homologies. I found that the DCNN demonstrates three key hallmarks of the number sense: numerosity-selective units (analogous to biological neurons), the behavioral ratio effect, and ordinality over representational space. Because the DCNN was not trained to enumerate, I conclude that the number sense is an emergent property of the network, the result of some combination of the network architecture and the constraint to develop the complex representational structure necessary for object recognition. By analogy I conclude that the number sense in animals was not necessarily the result of direct selective pressure to enumerate but might have “come for free” with the evolution of a complex visual system that evolved to identify objects and scenes in the real world.


Aerospace ◽  
2020 ◽  
Vol 7 (9) ◽  
pp. 126 ◽  
Author(s):  
Thaweerath Phisannupawong ◽  
Patcharin Kamsing ◽  
Peerapong Torteeka ◽  
Sittiporn Channumsin ◽  
Utane Sawangwit ◽  
...  

The capture of a target spacecraft by a chaser is an on-orbit docking operation that requires an accurate, reliable, and robust object recognition algorithm. Vision-based guided spacecraft relative motion during close-proximity maneuvers has been consecutively applied using dynamic modeling as a spacecraft on-orbit service system. This research constructs a vision-based pose estimation model that performs image processing via a deep convolutional neural network. The pose estimation model was constructed by repurposing a modified pretrained GoogLeNet model with the available Unreal Engine 4 rendered dataset of the Soyuz spacecraft. In the implementation, the convolutional neural network learns from the data samples to create correlations between the images and the spacecraft’s six degrees-of-freedom parameters. The experiment has compared an exponential-based loss function and a weighted Euclidean-based loss function. Using the weighted Euclidean-based loss function, the implemented pose estimation model achieved moderately high performance with a position accuracy of 92.53 percent and an error of 1.2 m. The in-attitude prediction accuracy can reach 87.93 percent, and the errors in the three Euler angles do not exceed 7.6 degrees. This research can contribute to spacecraft detection and tracking problems. Although the finished vision-based model is specific to the environment of synthetic dataset, the model could be trained further to address actual docking operations in the future.


Proceedings ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 17 ◽  
Author(s):  
Calimanut-Ionut Cira ◽  
Ramón Alcarria ◽  
Miguel-Ángel Manso-Callejo ◽  
Francisco Serradilla

This paper tackles the problem of object recognition in high-resolution aerial imagery and addresses the application of Deep Learning techniques to solve a challenge related to detecting the existence of geospatial elements (road network) in the available cartographic support. This challenge is addressed by building a convolutional neural network (CNN) trained to detect roads in high resolution aerial orthophotos divided in tiles (256 × 256 pixels) using manually labelled data.


Sign in / Sign up

Export Citation Format

Share Document