Automatic design tool for submicron current steering logic libraries

Author(s):  
M. Kayal ◽  
D. Cousinard ◽  
R. Kanan
2019 ◽  
Vol 126 ◽  
pp. 292-307 ◽  
Author(s):  
Nancy S. Soliman ◽  
Mohammed F. Tolba ◽  
Lobna A. Said ◽  
Ahmed H. Madian ◽  
Ahmed G. Radwan
Keyword(s):  

2020 ◽  
Author(s):  
Olivia Bridgewater-Smith ◽  
◽  
Gabriele Maurizi ◽  
Sebastiano Fichera ◽  
David Marquez-Gamez ◽  
...  
Keyword(s):  

2022 ◽  
Vol 41 (2) ◽  
pp. 1-16
Author(s):  
Benjamin Jones ◽  
Yuxuan Mei ◽  
Haisen Zhao ◽  
Taylor Gotfrid ◽  
Jennifer Mankoff ◽  
...  

We present an interactive design system for knitting that allows users to create template patterns that can be fabricated using an industrial knitting machine. Our interactive design tool is novel in that it allows direct control of key knitting design axes we have identified in our formative study and does so consistently across the variations of an input parametric template geometry. This is achieved with two key technical advances. First, we present an interactive meshing tool that lets users build a coarse quadrilateral mesh that adheres to their knit design guidelines. This solution ensures consistency across the parameter space for further customization over shape variations and avoids helices, promoting knittability. Second, we lift and formalize low-level machine knitting constraints to the level of this coarse quad mesh. This enables us to not only guarantee hand- and machine-knittability, but also provides automatic design assistance through auto-completion and suggestions. We show the capabilities through a set of fabricated examples that illustrate the effectiveness of our approach in creating a wide variety of objects and interactively exploring the space of design variations.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Sign in / Sign up

Export Citation Format

Share Document