CRP: Context-directed Replacement Policy to Improve Cache Performance for Coarse-Grained Reconfigurable Arrays

Author(s):  
Chen Yang ◽  
Jia Hou ◽  
Yizhou Wang ◽  
Li Geng
Author(s):  
Dennis Wolf ◽  
Andreas Engel ◽  
Tajas Ruschke ◽  
Andreas Koch ◽  
Christian Hochberger

AbstractCoarse Grained Reconfigurable Arrays (CGRAs) or Architectures are a concept for hardware accelerators based on the idea of distributing workload over Processing Elements. These processors exploit instruction level parallelism, while being energy efficient due to their simplistic internal structure. However, the incorporation into a complete computing system raises severe challenges at the hardware and software level. This article evaluates a CGRA integrated into a control engineering environment targeting a Xilinx Zynq System on Chip (SoC) in detail. Besides the actual application execution performance, the practicability of the configuration toolchain is validated. Challenges of the real-world integration are discussed and practical insights are highlighted.


Author(s):  
B. Shameedha Begum ◽  
N. Ramasubramanian

Embedded systems are designed for a variety of applications ranging from Hard Real Time applications to mobile computing, which demands various types of cache designs for better performance. Since real-time applications place stringent requirements on performance, the role of the cache subsystem assumes significance. Reconfigurable caches meet performance requirements under this context. Existing reconfigurable caches tend to use associativity and size for maximizing cache performance. This article proposes a novel approach of a reconfigurable and intelligent data cache (L1) based on replacement algorithms. An intelligent embedded data cache and a dynamic reconfigurable intelligent embedded data cache have been implemented using Verilog 2001 and tested for cache performance. Data collected by enabling the cache with two different replacement strategies have shown that the hit rate improves by 40% when compared to LRU and 21% when compared to MRU for sequential applications which will significantly improve performance of embedded real time application.


2008 ◽  
Vol 43 (7) ◽  
pp. 151-160 ◽  
Author(s):  
Bjorn De Sutter ◽  
Paul Coene ◽  
Tom Vander Aa ◽  
Bingfeng Mei

2011 ◽  
Vol 57 (8) ◽  
pp. 761-777 ◽  
Author(s):  
Ricardo S. Ferreira ◽  
João M.P. Cardoso ◽  
Alex Damiany ◽  
Julio Vendramini ◽  
Tiago Teixeira

Sign in / Sign up

Export Citation Format

Share Document