reconfigurable arrays
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 14)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Su Zheng ◽  
Kaisen Zhang ◽  
Yaoguang Tian ◽  
Wenbo Yin ◽  
Lingli Wang ◽  
...  

2021 ◽  
Author(s):  
Cheng Tan ◽  
Nicolas Bohm Agostini ◽  
Jeff Zhang ◽  
Marco Minutoli ◽  
Vito Giovanni Castellana ◽  
...  

Author(s):  
Ningxiner Zhao ◽  
Chengzhe Zou ◽  
Ryan L Harne

Recent studies have exemplified the potential for curved origami-inspired acoustic arrays to focus waves. Yet, reconfigurable structures that adopt curvatures are often difficult to translate to practice due to mechanical deformation of the facets that inhibit straightforward folding. In addition, not all tessellations that curve upon folding are also flat-foldable, which is a key advantage of portability inherent to many origami-inspired structures. This research introduces a new concept of partially activated reconfigurable acoustic arrays as a means to mitigate these drawbacks. Here, tessellations are studied where a subset of the facet surfaces are considered to radiate acoustic waves. The analytical results reveal focusing behaviors in such arrays that are otherwise not manifest for the array when fully activated. The focused waves are more intense in amplitude and space for partially activated arrays than fully activated counterparts. These trends are verified by experiment and are also found to be applicable to multiple reconfigurable array geometries. The results encourage broader study of the design space accessible in reconfigurable arrays to capitalize on all of the functionality afforded by origami-inspired wave guiding structures.


2021 ◽  
Vol 18 (3) ◽  
pp. 1-25
Author(s):  
George Charitopoulos ◽  
Dionisios N. Pnevmatikatos ◽  
Georgi Gaydadjiev

Executing complex scientific applications on Coarse-Grain Reconfigurable Arrays ( CGRAs ) promises improvements in execution time and/or energy consumption compared to optimized software implementations or even fully customized hardware solutions. Typical CGRA architectures contain of multiple instances of the same compute module that consist of simple and general hardware units such as ALUs, simple processors. However, generality in the cell contents, while convenient for serving a wide variety of applications, penalizes performance and energy efficiency. To that end, a few proposed CGRAs use custom logic tailored to a particular application’s specific characteristics in the compute module. This approach, while much more efficient, restricts the versatility of the array. To date, versatility at hardware speeds is only supported with Field programmable gate arrays (FPGAs), that are reconfigurable at a very fine grain. This work proposes MC-DeF, a novel Mixed-CGRA Definition Framework targeting a Mixed-CGRA architecture that leverages the advantages of CGRAs by utilizing a customized cell array, and those of FPGAs by incorporating a separate LUT array used for adaptability. The framework presented aims to develop a complete CGRA architecture. First, a cell structure and functionality definition phase creates highly customized application/domain specific CGRA cells. Then, mapping and routing phases define the CGRA connectivity and cell-LUT array transactions. Finally, an energy and area estimation phase presents the user with area occupancy and energy consumption estimations of the final design. MC-DeF uses novel algorithms and cost functions driven by user defined metrics, threshold values, and area/energy restrictions. The benefits of our framework, besides creating fast and efficient CGRA designs, include design space exploration capabilities offered to the user. The validity of the presented framework is demonstrated by evaluating and creating CGRA designs of nine applications. Additionally, we provide comparisons of MC-DeF with state-of-the-art related works, and show that MC-DeF offers competitive performance (in terms of internal bandwidth and processing throughput) even compared against much larger designs, and requires fewer physical resources to achieve this level of performance. Finally, MC-DeF is able to better utilize the underlying FPGA fabric and achieves the best efficiency (measured in LUT/GOPs).


Author(s):  
Dennis Wolf ◽  
Andreas Engel ◽  
Tajas Ruschke ◽  
Andreas Koch ◽  
Christian Hochberger

AbstractCoarse Grained Reconfigurable Arrays (CGRAs) or Architectures are a concept for hardware accelerators based on the idea of distributing workload over Processing Elements. These processors exploit instruction level parallelism, while being energy efficient due to their simplistic internal structure. However, the incorporation into a complete computing system raises severe challenges at the hardware and software level. This article evaluates a CGRA integrated into a control engineering environment targeting a Xilinx Zynq System on Chip (SoC) in detail. Besides the actual application execution performance, the practicability of the configuration toolchain is validated. Challenges of the real-world integration are discussed and practical insights are highlighted.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 445
Author(s):  
George Charitopoulos ◽  
Ioannis Papaefstathiou ◽  
Dionisios N. Pnevmatikatos

Executing complex scientific applications on Coarse Grain Reconfigurable Arrays (CGRAs) offers improvements in the execution time and/or energy consumption when compared to optimized software implementations or even fully customized hardware solutions. In this work, we explore the potential of application analysis methods in such customized hardware solutions. We offer analysis metrics from various scientific applications and tailor the results that are to be used by MC-Def, a novel Mixed-CGRA Definition Framework targeting a Mixed-CGRA architecture that leverages the advantages of CGRAs and those of FPGAs by utilizing a customized cell-array along, with a separate LUT array being used for adaptability. Additionally, we present the implementation results regarding the VHDL-created hardware implementations of our CGRA cell concerning various scientific applications.


Sign in / Sign up

Export Citation Format

Share Document