Resonant Frequency Calculation of Witricity Using Equivalent Circuit Model Combined with Finite Element Method

Author(s):  
Haijuan Zhou ◽  
Shiyou Yang
Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1644
Author(s):  
Qian Zhang ◽  
Huijuan Liu ◽  
Tengfei Song ◽  
Zhenyang Zhang

A novel, improved equivalent circuit model of double-sided linear induction motors (DLIMs) is proposed, which takes the skin effect and the nonzero leakage reactance of the secondary, longitudinal, and transverse end effects into consideration. Firstly, the traditional equivalent circuit with longitudinal and transverse end effects are briefly reviewed. Additionally, the correction coefficients for longitudinal and transverse end effects derived by one-dimensional analysis models are given. Secondly, correction factors for skin effect, which reflects the inhomogeneous air gap magnetic field vertically, and the secondary leakage reactance are derived by the quasi-two-dimensional analysis model. Then, the proposed equivalent circuit is presented, and the excitation reactance and secondary resistance are modified by the correction coefficients derived from the three analytical models. Finally, a three-dimensional (3D) finite element model is used to verify the proposed equivalent circuit model under varying air gap width and frequency, and the results are also compared with that of the traditional equivalent circuit models. The calculated thrust characteristics by the proposed equivalent circuit and 3D finite element model are experimentally validated under a constant voltage–frequency drive.


2019 ◽  
Vol 11 (7) ◽  
pp. 168781401985368 ◽  
Author(s):  
Jesús Acevedo-Mijangos ◽  
Antonio Ramírez-Treviño ◽  
Daniel A May-Arrioja ◽  
Patrick LiKamWa ◽  
Héctor Vázquez-Leal ◽  
...  

We present a resonant magnetic field sensor based on microelectromechanical systems technology with optical detection. The sensor has single resonator composed of two orthogonal silicon beams (600 µm × 26 µm × 2 µm) with an integrated mirror (50 µm × 34 µm × 0.11 µm) and gold tracks (16 µm × 0.11 µm). The resonator is fabricated using silicon-on-insulator wafer in a simple bulk micromachining process. The sensor has easy performance that allows its oscillation in the first bending vibration mode through the Lorentz force for monitoring in-plane magnetic field. Analytical models are developed to predict first bending resonant frequency, quality factor, and displacements of the resonator. In addition, finite element method models are obtained to estimate the resonator performance. The results of the proposed analytical models agree well with those of the finite element method models. For alternating electrical current of 30 mA, the sensor has a theoretical linear response, a first bending resonant frequency of 43.8 kHz, a sensitivity of 46.1 µm T−1, and a power consumption close to 54 mW. The experimental resonant frequency of the sensor is 53 kHz. The proposed sensor could be used for monitoring in-plane magnetic field without a complex signal conditioning system.


2013 ◽  
Vol 278-280 ◽  
pp. 315-318
Author(s):  
Ming Li Zhao ◽  
Bo Zhao ◽  
Yu Qing Wang

The node position of amplitude transformer was determined by the finite element method, and the flange was designed at the nod position for conveniently installation. By the finite element software, the amplitude transformer with flange was optimized and dressed, and its structural parameters were determined. During the actual manufacturing process, it was used impedance analyzer to test its vibration performance, the testing results show that this system vibration performance is good, its resonant frequency is 34.771kHz, anti-resonant frequency is 35.008kHz. The above-mentioned results are very much coincided with the system natural frequency of 34.893kHz which is drew by finite element method. Compared to the traditional dressing this method has many advantages such as convenience, green, environmental protection, low cost and others.


Sign in / Sign up

Export Citation Format

Share Document