Real-Time Decision Making Model for Thermostatically Controlled Load Aggregators by Natural Aggregation Algorithm

Author(s):  
Chenxi Li ◽  
Yingying Chen ◽  
Fengji Luo ◽  
Zhao Xu ◽  
Yu Zheng
2014 ◽  
Vol 23 (06) ◽  
pp. 1460023 ◽  
Author(s):  
J. Sukarno Mertoguno

Real-time autonomy is a key element for system which closes the loop between observation, interpretation, planning, and action, commonly found in UxV, robotics, smart vehicle technologies, automated industrial machineries, and autonomic computing. Real-time autonomic cyber system requires timely and accurate decision making and adaptive planning. Autonomic decision making understands its own state and the perceived state of its environment. It is capable of anticipating changes and future states and projecting the effects of actions into future states. Understanding of current state and the knowledge/model of the world are needed for extrapolating actions and deriving action plans. This position paper proposes a hybrid, statistical-formal approach toward achieving realtime autonomy.


2019 ◽  
pp. 125-133
Author(s):  
Duong Truong Thi Thuy ◽  
Anh Pham Thi Hoang

Banking has always played an important role in the economy because of its effects on individuals as well as on the economy. In the process of renovation and modernization of the country, the system of commercial banks has changed dramatically. Business models and services have become more diversified. Therefore, the performance of commercial banks is always attracting the attention of managers, supervisors, banks and customers. Bank ranking can be viewed as a multi-criteria decision model. This article uses the technique for order of preference by similarity to ideal solution (TOPSIS) method to rank some commercial banks in Vietnam.


Informatica ◽  
2009 ◽  
Vol 20 (2) ◽  
pp. 305-320 ◽  
Author(s):  
Edmundas Kazimieras Zavadskas ◽  
Arturas Kaklauskas ◽  
Zenonas Turskis ◽  
Jolanta Tamošaitienė

Author(s):  
Shreyanshu Parhi ◽  
S. C. Srivastava

Optimized and efficient decision-making systems is the burning topic of research in modern manufacturing industry. The aforesaid statement is validated by the fact that the limitations of traditional decision-making system compresses the length and breadth of multi-objective decision-system application in FMS.  The bright area of FMS with more complexity in control and reduced simpler configuration plays a vital role in decision-making domain. The decision-making process consists of various activities such as collection of data from shop floor; appealing the decision-making activity; evaluation of alternatives and finally execution of best decisions. While studying and identifying a suitable decision-making approach the key critical factors such as decision automation levels, routing flexibility levels and control strategies are also considered. This paper investigates the cordial relation between the system ideality and process response time with various prospective of decision-making approaches responsible for shop-floor control of FMS. These cases are implemented to a real-time FMS problem and it is solved using ARENA simulation tool. ARENA is a simulation software that is used to calculate the industrial problems by creating a virtual shop floor environment. This proposed topology is being validated in real time solution of FMS problems with and without implementation of decision system in ARENA simulation tool. The real-time FMS problem is considered under the case of full routing flexibility. Finally, the comparative analysis of the results is done graphically and conclusion is drawn.


Sign in / Sign up

Export Citation Format

Share Document