A Received Signal Strength Based Indoor Localization Algorithm Using ELM Technique and Ridge Regression

Author(s):  
Zhiyue Feng ◽  
Yanhua Cao ◽  
Jun Yan
2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881563 ◽  
Author(s):  
Jie Wei ◽  
Fang Zhao ◽  
Haiyong Luo

With the development of indoor localization technology, the location-based services such as product advertising recommendation in the shopping mall attract widespread attention, as precise user location significantly improves the efficiency of advertising push and brings broader profits. However, most of the Wi-Fi-based indoor localization approaches requiring professionals to deploy expensive beacon devices and intensively collect fingerprints in each location grid, which severely limits its extensive promotion. We introduce a zero-cost indoor localization algorithm utilizing crowdsourcing fingerprints to obtain the shop recognition where the user is located. Naturally utilizing the Wi-Fi, GPS, and time-stamp fingerprints collected from the smartphone when user paid as the crowdsourcing fingerprint, we avoid the requirement for indoor map and get rid of both devices cost and manual signal collecting process. Moreover, a shop-level hierarchical indoor localization framework is proposed, and high robustness features based on Wi-Fi sequences variation pattern in the same shop analysis are designed to avoid the received signal strength fluctuations. Besides, we also pay more attention to mine the popularity properties of shops and explore GPS features to improve localization accuracy in the Wi-Fi absence situation effectively. Massive experiments indicate that SP-Loc achieves more than 93% localization accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5583
Author(s):  
Byeong-ho Lee ◽  
Kyoung-Min Park ◽  
Yong-Hwa Kim ◽  
Seong-Cheol Kim

In this paper, we propose a hybrid localization algorithm to boost the accuracy of range-based localization by improving the ranging accuracy under indoor non-line-of-sight (NLOS) conditions. We replaced the ranging part of the rule-based localization method with a deep regression model that uses data-driven learning with dual-band received signal strength (RSS). The ranging error caused by the NLOS conditions was effectively reduced by using the deep regression method. As a consequence, the positioning error could be reduced under NLOS conditions. The performance of the proposed method was verified through a ray-tracing-based simulation for indoor spaces. The proposed scheme showed a reduction in the positioning error of at least 22.3% in terms of the median root mean square error compared to the existing methods. In addition, we verified that the proposed method was robust to changes in the indoor structure.


Sign in / Sign up

Export Citation Format

Share Document