Key Techniques on Design of Laser High-speed Video System for Recording Metal Transfer in Arc Welding

Author(s):  
Wen Yuan-mei ◽  
Huang Shi-sheng ◽  
Xue Jia-xiang ◽  
Liu Xiao
Author(s):  
Y Wu ◽  
R Kovacevic

Gas metal arc welding has been generally accepted as the preferred joining technique due to its advantages in high production and automated welding applications. Separate control of arc energy and arc force is an essential way to improve the welding quality and to obtain the projected metal transfer mode. One of the most effective methods for obtaining separate control is to exert an additional force on the metal transfer process. In this paper, the droplet transfer process with additional mechanical force is studied. The welding system is composed of an oscillating wire feeder. The images of molten metal droplets are captured by a high-speed digital camera, and both the macroscopic appearance and the cross-sectional profiles of the weld beads are analysed. It is shown that the droplet transfer process can be significantly improved by wire electrode oscillation, and a projected spray transfer mode can be established at much lower currents. By increasing the oscillation frequency, the droplet transfer rate increases while the droplet size decreases. In addition, the improvement in the droplet transfer process with wire oscillation leads to an enhancement of the surface quality and a modification of the geometry of the weld beads that could be of importance for overlay cladding and rapid prototyping based on deposition by welding.


2018 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
Anh Nguyen Van ◽  
Tashiro Shinichi ◽  
Huu Manh Ngo ◽  
Akihisa Murata ◽  
Tadasuke Murata ◽  
...  

The purpose of this investigation is to clarify the behavior of exit keyhole diameter during switch off (cutting arc) period in case of Plasma keyhole arc welding (PKAW). During switch off period, the keyhole and weld pool are visualized from backside via a high speed video camera (HSVC). The result showed that keyhole diameter on the backside is unstable. The keyhole size is much changed in X-axis. Firstly, it is increased and then it is decreased to a stationary value at t = 0.05 s after cutting arc. Meanwhile, the size in Y-axis is not changed approximately from t = 0.01 s after cutting arc. The results can be considered to control this process more efficiency.


2020 ◽  
Vol 127 (7) ◽  
pp. 1041-1046
Author(s):  
Tammy H. Osaki ◽  
Midori H. Osaki ◽  
Denny M. Garcia ◽  
Teissy Osaki ◽  
Lilian Ohkawara ◽  
...  

2014 ◽  
Vol 490-491 ◽  
pp. 1042-1046 ◽  
Author(s):  
Cheng Bo Ru ◽  
Ying Hua Ye ◽  
Cheng Ling Wang ◽  
Peng Zhu ◽  
Rui Qi Shen ◽  
...  

A solid propellant microthruster array consists of three parts (five layers) was designed to form propulsion system of nanosatellite. The layers of the array were fabricated by different MEMS technique respectively. Then the array was assembled by adhesive bonding (H70E thermal epoxy). An initial test was operated with the ignition test stand composed of high speed video system, electronic power source, and oscilloscope. A constant voltage was applied to the igniters through two probes contact with the pad of ignition circuitry. The test indicates that the microthruster array can be ignited under 15V.


1995 ◽  
Vol 398 ◽  
Author(s):  
M. Wettlaufer ◽  
J. Laakmann

ABSTRACTTernary titanium-aluminides with compositions of Ti51Al47Fe2, Ti51A147Cr2 and Ti51Al47Mn2 were investigated with respect to the correlation of their solidification front velocity v and bulk undercooling ΔT. The observation of the solidification front during the recalescence event has been realized using a high speed video system capable of recording up to 12,000 pictures per second. The temperature measurement was carried out by pyrometry, avoiding contact with the sample. The comparison of the experimental data with the LKT-theory (Lipton, Kurz, Trivedi; [1]) refers to a primary (hcp) β-Ti solidification for undercoolings below ΔT≈ 130 K and primary (bcc) α-Ti solidification for ΔT≥ 130 K. For undercoolings ≥ 150 K the theory differs greatly from the experimental results.The maximum undercoolings achieved were 268 K (Ti51Al47Fe2), 285 K (Ti51Al47Cr2) and 280 K (Ti51Al47Mn2), corresponding to a solidification front velocity v ≈ 9-10 m/s for all alloys.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2457
Author(s):  
Oleg Panchenko ◽  
Dmitry Kurushkin ◽  
Fedor Isupov ◽  
Anton Naumov ◽  
Ivan Kladov ◽  
...  

In wire arc additive manufacturing of Ti-alloy parts (Ti-WAAM) gas metal arc welding (GMAW) can be applied for complex parts printing. However, due to the specific properties of Ti, GMAW of Ti-alloys is complicated. In this work, three different types of metal transfer modes during Ti-WAAM were investigated: Cold Metal Transfer, controlled short circuiting metal transfer, and self-regulated metal transfer at a direct current with a negative electrode. Metal transfer modes were studied using captured waveform and high-speed video analysis. Using these modes, three walls were manufactured; the geometry preservation stability was estimated and compared using effective wall width calculation, the microstructure was analyzed using optical microscopy. Transfer process data showed that arc wandering depends not only on cathode spot instabilities, but also on anode processing properties. Microstructure analysis showed that each produced wall consists of phases and structures inherent for Ti-WAAM. α-basketweave in the center of and α-colony on the grain boundary of epitaxially grown β-grains were found with heat affected zone bands along the height of the walls, so that the microstructure did not depend on metal transfer dramatically. However, the geometry preservation stability was higher in the wall, produced with controlled short circuiting metal transfer.


2013 ◽  
Vol 651 ◽  
pp. 333-337 ◽  
Author(s):  
Guo Hong Ma ◽  
Yu Ming Zhang

This paper designed a double-electrode GMAW(gas metal arc welding) system. This system includes main arc and bypass arc. Main arc (Base metal current: Ibm) is supplied with Constant Current power (CC mode) and bypass arc (bypass current: Ibp) is Constant Voltage power (CV mode). Main arc electrode used common carbon wire, bypass arc electrode used water cool copper. Welding experiment shows this DE-GMAW can change common metal transfer into spray transfer with lowest critical total current (Itotal) 200 amps. When Ibm decreases and bypass voltage increases, this critical current will increase and it is less than 230 amps when keeping spray transfer. High speed video proved that metal transfer is changed from spray transfer to globular transfer.


Sign in / Sign up

Export Citation Format

Share Document