spray transfer
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 14)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Chen Yue ◽  
Annan Yin ◽  
Dehua Huang

Abstract In this study, the effect of the transverse magnetic field on the arc characteristics and droplet transfer behavior is investigated during Laser-MIG hybrid welding of Ti-6Al-4V. Especially, transverse magnetic fields with 0 mT, 8 mT, 16 mT, 24 mT, and 32 mT are studied. Results indicate that an appropriate magnetic field can increase the stability of arc characteristics, improve the droplet detachment efficiency, and reduce the welding defects such as incomplete fusion and undercut. By applying 24 mT transverse magnetic field, the maximum arc area can decrease by 48.7% with its variance changing from 2.81 mm2 to 1.06 mm2, indicating that an appropriate transverse magnetic field can shrink the arc and improve its stability. The reason of arc shrinkage is that the electric streamline in the arc rotates away from the laser side to the droplet side due to the influence of external magnetic field. On the other hand, the droplet transfer process become more uniform under the appropriate magnetic field. This phenomenon is mainly attributed to the change of Lorentz force direction during droplet rotation, which resultantly increases effective detachment energy. This phenomenon leads to the reduction of the contact time between droplet and molten pool. The droplet transfer form changes from short-circuit transfer to meso-spray transfer under 24 mT magnetic field because of the reduction of the contact time. Therefore, the incomplete fusion and undercut disappears. At last, the appropriated magnetic field parameters during the laser-MIG parameters (2 kW, 160 A, 2 m/min) is concluded as B =24 mT.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5792
Author(s):  
Lei Xiao ◽  
Ding Fan ◽  
Jiankang Huang ◽  
Shinichi Tashiro ◽  
Manabu Tanaka

For gas metal arc welding (GMAW), increasing the welding current is the most effective way to improve welding efficiency. However, much higher current decreases the welding quality as a result of metal rotating-spray transfer phenomena in the high-current GMAW process. In this work, the external axial magnetic field (EAMF) was applied to the high-current GMAW process to control the metal transfer and decrease the welding spatters. A unified arc-droplet coupled model for high-current GMAW using EAMFs was built to investigate the metal rotating-spray transfer behavior. The temperature fields, flow fields in the arc, and droplet were revealed. Considering all the heat transferred to the molten metal, the Joule heat was found to be the dominant factor affecting the droplet temperature rise, followed by the anode heat. The conductive heat from the arc contributed less than half the value of the other two. Considering the EAMFs of different alternating frequencies, the arc constricting effects and controlled metal transfer behaviors are discussed. The calculated results agree well with the experimental high-speed camera observations.


Author(s):  
Rudreshi Addamani ◽  
Holalu Venkatdas Ravindra ◽  
S. K. Gayathri Devi ◽  
Ugrasen Gonchikar

Abstract To gain high cost effective products along with quality and productivity, Pulsed Gas Metal Arc Welding (P-GMAW) process is used in many highly developed industries for fabrication of welded joints. The input parameters are the most important factors which affects the productivity, quality and cost effective for the welding process. The processes enable low net heat input, stable spray transfer and with low mean current. To enhance efficiencies with constant voltage GMAW process, P-GMAW is an outstanding substitute for those industries which are looking to improve quality of welds since the process helps over varying operator’s skills. It is essential to determine the input/output relationship parameters, in order to recognize and control the P-GMAW welding process. P-GMAW applies waveform control logic to fabricate a very precise control of the arc during speed range and a broad wire feed. The power source switches between low background current and a high peak current between 30 to 400 times per second to obtain modified spray transfer process. The peak current pinches off wire droplets and drive it to the welded joints over this period. The process produces low heat input allowing weld pool to solidify, that metal transfer cannot occur but by the mean time, background current maintains the arc with stable spray transfer. Trials have been conducted on SS 304 material using copper coated filler wire of size 1.4 mm based on the Taguchi’s L27 standard orthogonal array. Current, Gas Flow Rate (GFR) and Wire Feed Rate (WFR) with a constant speed are the input parameters considered to carry out trials. The output parameters are Yield strength (YS, N/mm2), percentage of elongation and Ultimate Tensile Strength (UTS, N/mm2). Indirect response parameters are Viz., AE signals such as welding AERMS, welding AEENERGY, tensile AERMS and tensile AEENERGY along with MV signals like area and height of the weld bead are considered to assess the performance of the weld bead joint. It is clearly observed from the obtained results that an excellent relationship exists between welding AERMS welding AEENERGY with tensile AERMS and tensile AEENERGY along with MV signals which were taken at the time of tensile test to evaluate the performance of the weld bead joint. Verification of the results are carried out through performing different NDT testing methods on weld bead joint Viz., X–radiography, Scanning Electron Microscope (SEM) images to analyse external defects in the welded joints. On different zones of welded joint, Energy dispersive analysis (EDX) examination is carried out for elemental composition.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Kaiyuan Wu ◽  
Jiatong Zhan ◽  
Xuanwei Cao ◽  
Xiaobin Hong ◽  
Peimin Xie

Abstract The effects of pulse phase and pulse stage on the metal transfer characteristics in double-wire double pulse gas metal arc welding (DP-GMAW) of aluminum (Al) alloy were studied using high-speed camera images and current and voltage waveforms. In addition, the effects of various forces on dynamic metal transfer behavior were analyzed under different pulse phases and pulse stages. The results show that the spray transfer mode can be obtained in both the alternating pulse phase (APP) and synchronous pulse phase (SPP). The transfer pattern of the leading and trailing droplets is alternating in the APP, but changes to simultaneous metal transfer in the SPP, mainly owing to influence of the pulse phase on droplet growth. The transfer type is one drop double pulse (ODDP) during the strong pulse stage and one drop triple pulse (ODTP) during the weak pulse stage, regardless of the pulse phase. The pulse phase does, however, affect the Lorentz force between the leading and trailing droplets, causing droplet collision in the SPP, which results in a poorer weld bead appearance compared with in the APP. Finally, the droplet diameter was found to be similar during different pulse phases and pulse stages.


2020 ◽  
Author(s):  
Lei Xiao ◽  
Ding Fan ◽  
Jiankang Huang

Abstract A three-dimensional numerical model based on the volume-of-fluid (VOF) method is typically preferred for studying high-current gas metal arc welding (GMAW) metal transfer mechanism and then controlling it. Unfortunately, the rotating spray transfer is extremely complicated, therefore the research community has focused on simplified models without considering the energy conservation to make analysis manageable for the unstable metal transfer process. Using our created model, the metal transfer of high-current GMAW with shielding gas of different conductivities has been studied by analyzing acting forces and fluid flows in the metal liquid column, especially for the contributions of the self-induced electromagnetic force, equivalent volume force of the capillary pressure of the surface tension (Named surface tension force in this work), static arc pressure. It is found that the unbalanced electromagnetic force greatly promotes the metal rotating motion in 500A MIG with pure argon shielding gas and it pushes the metal liquid column to rotate. Considering the arc constricting effect in active shielding gas by simply changing the arc conductivity, it is found that the metal liquid column no longer rotates, it turns to swing since the unbalanced electromagnetic force is large enough to break the rotating motion. The calculated results of the metal liquid column deflected angle and rotating/swing frequency agree well with the experiment of high-speed camera observations.


2020 ◽  
Vol 15 (5) ◽  
pp. 055036
Author(s):  
Jiapeng Liu ◽  
Xinhua Yao ◽  
Jian Ye ◽  
Chuck Zhang ◽  
Hui Lin ◽  
...  

2020 ◽  
Author(s):  
Lei Xiao ◽  
Ding Fan ◽  
Jiankang Huang

Abstract Gas metal arc welding (GMAW) is one of the most widely used processes in automated welding technologies. Its efficiency relies on the travel speed and wire melting rate. Increasing the welding current is the most effective way to improve them. However, the welding quality will decrease because of the unstable metal rotating spray transfer in the high-current GMAW which will aggravate the welding spatters and instability. To study the high-current metal transfer mechanism and then propose schemes of improvements and controls, a three-dimensional numerical model based on the volume-of-fluid (VOF) method is typically preferred. Unfortunately, the rotating spray transfer is extremely complicated, therefore the research community has focused on simplified models without considering the energy conservation to make analysis manageable for the unstable metal transfer process. Using our created model, the metal transfer of high-current GMAW with shielding gas of different conductivities has been studied by analyzing acting forces and fluid flows in the metal liquid column, especially for the contributions of the self-induced electromagnetic force, equivalent volume force of the capillary pressure of the surface tension (Named surface tension force in this work), static arc pressure. It is found that the unbalanced electromagnetic force greatly promotes the metal rotating motion in 500A MIG with pure argon shielding gas and it pushes the metal liquid column to rotate. Considering the arc constricting effect in active shielding gas by simply changing the arc conductivity, it is found that the metal liquid column no longer rotates, it turns to swing since the unbalanced electromagnetic force is large enough to break the rotating motion. The calculated results of the metal liquid column deflected angle and rotating/swing frequency agree well with the experiment of high-speed camera observations.


2020 ◽  
Vol 64 (9) ◽  
pp. 1615-1624
Author(s):  
R. A. Ribeiro ◽  
E. B. F. Dos Santos ◽  
P. D. C. Assunção ◽  
K. J. Daun ◽  
A. P. Gerlich

2020 ◽  
Author(s):  
Guoqiang Liu ◽  
Xinhua Tang ◽  
Qi Xu ◽  
Fenggui Lu ◽  
Haichao Cui

Abstract Small amount of active gases CO 2 and O 2 were added into pure argon inert shielding gas to improve the weld formation of pulsed-current narrow-gap gas metal arc welding (NG-GMAW) of mild steel. Their effects on droplet transfer and arc behavior were investigated. A high-speed visual sensing system was utilized to observe the metal transfer process and arc morphology. When the proportion of CO 2 , being added into the pure argon shielding gas, changes from 5% to 5%, the metal transfer mode changes from pulsed spray streaming transfer to pulsed projected spray transfer, while it remains the pulsed spray streaming transfer when 2% to 10% O 2 is added. Both CO 2 and O 2 are favorable to stabilizing arc and welding process. O 2 is even more effective than CO 2 . However, O 2 is more likely to cause the inclusion defects in the weld, while CO 2 can improve the weld appearance in some sense. The weld surface concavity, which is sensitive to the formation of lack-of-fusion defect in NG-GMAW, is greatly influenced by the addition of active gas, but the weld width and weld penetration almost keep constant.


2020 ◽  
Vol 99 (1) ◽  
pp. 25s-38s
Author(s):  
JIANG YU ◽  
◽  
BO WANG ◽  
HONGTAO ZHANG ◽  
PENG HE ◽  
...  

The droplet transfer and voltage-current characteristics of gas metal arc welding (GMAW) in single-pulsed GMAW (single GMAW-P), plasma pulsed GMAW (plasma GMAW-P), and plasma-GMAW-P with a magnetic field were studied using the synchronous acquisition system of high-speed camera and electric signals. The results showed the plasma arc and magnetic field had a significant effect on the droplet transfer process. The indirect arc of the plasma and gas metal arc emerged in the pulse peak phase causing a shunt phenomenon of the GMAW current. The period of the indirect arc was increased under the action of the magnetic field. In hybrid plasma GMAW-P, when the GMAW current did not exceed 140 A, several pulsed one-drop free transfers occurred and the droplet transfer period decreased with the increase in the plasma welding current; when the GMAW current exceeded 140 A, and the plasma welding current was less than 180 A, spray transfer was formed. The droplet transfer transformed into a projected transfer when the plasma welding current increased to 180 A. In plasma-GMAW-P hybrid welding with a magnetic field, the magnetic field had a slight effect on the transfer period. When the GMAW current did not exceed 140 A, the droplet transfer was mainly repelled transfer. The detaching location was on the right side of the wire when the magnetic field current was less than 3 A. When the magnetic field current exceeded 3 A, it was below or on the left side of the wire. When the GMAW current exceeded 140 A and the magnetic field current was less than 5 A, spray transfer was formed, but the droplet transfer mode transformed into a projected transfer with a magnetic field current of 5 A.


Sign in / Sign up

Export Citation Format

Share Document